
MicroNator

UNIVERSAL
DEVELOPMENT BOARD

Version 4.04a

BASIC11
Version 027

RF-232
http://www.micronator.com

BASIC11

ISBN 2-9803460-3-9
© Copyright 1996 by RF-232 (2968-6177 QUÉBEC Inc.)

Dépôt Légal - Bibliothèque Nationale du Québec, novembre 1996.

PRINTED IN CANADA

MicroNator

UNIVERSAL
DEVELOPMENT BOARD

Version 4.04a

BASIC11
Version: 027

RF-232
http://www.micronator.com

MicroNator

MicroNator UNIVERSAL DEVELOPMENT BOARD BASIC11

All rights reserved. Printed in Montréal, Québec. No part of this book may be used or
reproduced in any form or by any means, or stored in a data-base or retrieval system, with-
out prior written permission of RF-232, except in the case of brief quotations embodied in
critical articles and reviews. Making copies of any part of this book for any purpose other
than your own personal use is a violation of copyright laws. For information, contact:

RF-232
1404 rue Galt

Montréal, Qc H4E 1H9
CANADA

Tél: (514) 761-4201

RF-232
21 rue André Gide

59123 ZUYDCOOTE
FRANCE

Tél: 03 28 58 28 39

micronator@micronator.com

This book is sold as is, without warranty of any kind, either express or implied, respecting the contents of
this book, including but not limited to implied warranties for the book's quality, performance, merchant abil-
ity, or fitness for any particular purpose. Neither RF-232 nor its dealers or distributors shall be liable to the
purchaser or any other person or entity with respect to any liability, loss, or damage caused or alleged to be
caused directly or indirectly by this book.

ISBN 2-9803460-3-9
© Copyright 1994 by RF-232 (2968-6177 QUÉBEC Inc.)

Dépôt Légal - Bibliothèque Nationale du Québec, novembre 1996

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 1

MicroNator

UNIVERSAL
DEVELOPMENT BOARD

Basic11 Manual

RF-232 reserves the right to make changes without further notice to any products
herein to improve reliability, function or design. RF-232 does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey
any licence under its patent rights nor the rights of others.

Information contained in this manual applies to
Version (4.04) MicroNator UNIVERSAL DEVELOPMENT BOARD

serial numbers 4000 through 9999

The computer program supplied with MicroNator System and to be written in the EEPROM
of the device may contains material copyrighted by RF-232, first published 1993, and may be
used only under a licence.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 2 http://www.micronator.com

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 3

PREFACE

BASIC11 is a very fast and complete control oriented BASIC interpreter for the MicroNator
MC68HC11 microcomputer system. It provides all the functions of standard BASIC along
with a number of enhancements that allow direct control of some of the MC68HC11's hard-
ware features using BASIC statements.

The only limitations of BASIC11 (which usually are not limitations in a control environment)
are that it only supports integer variables. Also strings are only supported in PRINT and
INPUT statements.

Lines entered into a BASIC11 program must begin with a line number and must be terminated
by a carrier return. Lines may be no longer than 80 characters. All lines are automatically put
in numerical order by BASIC11 as they are typed in. Lines may be deleted from a program by
simply typing the line number followed immediately by a carriage return.

The syntax of each line in a BASIC11 program is checked as soon as a CARRIER RETURN
is entered and any errors are reported immediately. This prevents the interpreter from having
to check syntax at runtime and is one of the things that contributes to BASIC11's speed.

WARRANTY

Even though many hours of work went into the writing and testing of BASIC11, it is believed
to be “bug free”, BASIC11 is supplied “as-is” and without warranty. The author makes no
express or implied warranties as to the fitness of use and merchantability of the product. The
user assumes the entire risk as to its quality, performance and fitness of use.

In no event will the author be liable for direct, indirect, incidental, or consequential damages
resulting from the use of this product. Including but not limited to loss of sales, income, ser-
vice, profits, or potential profits.

In the event a situation is found where the program does not function as the manual describes,
the author will attempt to correct any errors brought to his attention, however he makes no
guarantee to do so.

COPYRIGHT NOTICE

The entire contents of this manual and the software described herein are copyrighted with all
rights reserved. No part of this manual or the software may be copied in whole or in part with-
out the express permission of the author.

†NOTE

MicroNator, CPU-11/64e2, and UCT-11/64e2 System refer to the same development system.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 4 http://www.micronator.com

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 5

Contents at a Glance

THE BASICS .9

COMMANDS .15

STATEMENTS. .19

BUILT IN FUNCTIONS .35

ERROR REPORTING .41

INTERRUPT VECTOR TABLE45

INDEX .59

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 6 http://www.micronator.com

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 7

Table of Contents

THE BASICS OF BASIC11 .9
Lines .9
Integer Constants: .9
String Constants: .9
Variables: .9
Variable Assignment 10
Operators: .11
Operator Precedence:12
Operating Modes: .12
Remarks: .13

COMMANDS OF BASIC1115
Commands .15

STATEMENTS OF BASIC1119
Assignment: .19

 Control Transfer: .22
Conditional Tests: .23
Input/Output: .24
Looping Constructs: .26
Program Termination: 28
Real Time Event Statements:28
 Miscellaneous Statements: 31

BUILT IN FUNCTIONS OF BASIC11 35
Mathematical Functions: 35
Print Functions: .36
Hardware Related Functions:37

ERROR REPORTING OF BASIC11 41
APPENDIX A .45
APPENDIX B .47
INDEX .59

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 8 http://www.micronator.com

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 9

CHAPTER 1

THE BASICS OF BASIC11

1.1 Lines

Each line of a BASIC11 program must begin with a line number. Lines may be num-
bered from 1 through 32767 and each line must be terminated by a CARRIER RETURN.
Lines may contain multiple statements that are separated by colons. Spaces may be used
freely in BASIC11 statements to improve their readability with one exception. Assignment
statements and arithmetic/logic statements may contain no imbedded blanks. Some examples
follow:

10 PRINT X,X*X,RND(0)-5
20 X=5: Y=10: Z=15

1.2 Integer Constants:

All integer constants are represented internally as 16 bit two's complement numbers
with a decimal range of -32768 to 32767 ($0000 to $FFFF in hex). In the source program and
input statements numbers may be represented in either decimal or hexadecimal form. All
hexadecimal constants must be prefixed by a dollar sign ($). Some examples of integer con-
stants are:

50 X=1000
60 Y=-55
70 Z=PEEK($E010)

1.3 String Constants:

As mentioned earlier, BASIC11 does not support string variables. However, it does
support string constants in both PRINT statements and INPUT statements to allow for
prompting of input data. Some examples of string constants follow:

100 PRINT “Please Enter Your Name”
200 INPUT “Enter a Number”,N

1.4 Variables:

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 10 http://www.micronator.com

BASIC11 currently supports only integer variables. Integer variable names can consist
of a single alphabetic letter or a letter followed by another letter or number. Examples of inte-
ger variable names are:

AB, XZ,R1,TO,IF

 Notice in the above example that two of the variables are the same as the BASIC11
keywords TO and IF. In many BASIC's this is illegal but in BASIC11 it is perfectly legal.

Any legal integer variable name may also be subscripted or dimensioned using the
DIM statement. A variable is dimensioned by following any legal integer variable name by an
expression that is enclosed in parentheses.

†NOTE that when a variable is declared in a DIM statement storage is not allocated
until runtime. This is because all array storage is allocated dynamically. All dimensioned vari-
ables start with 0. For example:

300 DIM AX(4)

Will create the following five variables:

AX(0), AX(1), AX(2), AX(3), AX(4)

Again, the same variable name may be used for both a non-dimensioned and dimen-
sioned variable. All dimensioned variables must be declared in a DIM statement before they
can be referenced in an expression or Error # 24 (Undimensioned Array) will result when the
variable is referenced during a program run.

1.5 Variable Assignment

By using the LET, INPUT, INBYTE, or the READ statements variables may be
assigned values. The most common way to assign a value to a variable is through the use of
the LET statement. For example, the statement:

90 LET GD=7

Would assign the integer value of 7 to the variable “GD” so that each time the variable
“GD” is used in an expression, the numerical value of 7 would actually be substituted.

An INPUT statement, when executed, will cause BASIC11 to stop, print a question
mark on the terminal, and wait for the user to enter a numerical constant. For example, the
statement:

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 11

40 INPUT A1

will assign whatever number is typed at the terminal to the variable “A1”.

The INBYTE statement is similar to the input statement except that instead of expect-
ing an ASCII formatted number from the terminal input device, it assigns the value of the
ASCII byte to the variable that follows it. For example if the statement INBYTE AX were
executed and the character “Y” were typed at the terminal, the variable AX would contain the
value 89 which is the numerical value of the ASCII character “Y”. The INBYTE statement is
very useful for obtaining data from the control terminal.

The READ statement works almost like the INPUT statement except that the numeri-
cal constant is taken from a DATA statement instead of being typed in by a user from the ter-
minal (more about the READ and DATA statements later).

1.6 Operators:

There are three classes of operators available in BASIC11. The one most are familiar
with is the mathematical operators. Addition, subtraction, multiplication, and division. The
mathematical operators are:

SYMBOL EXAMPLE MEANING

+ A+B Add A to B
- A-B Subtract B from A
* A*B Multiply A and B
/ A/B Divide A by B
\ A\B Remainder of (A/B) or Modulo

The next class of operators is the logical operators. They are used to perform “bitwise”
operations. They can be used to “ignore” certain bits within a word or in conditional tests
when more than one condition needs to be tested. The logical operators are:

SYMBOL EXAMPLE MEANING

.AND. A.AND.B Bitwise logical AND of A and B.

.OR. A.OR.B Bitwise logical OR of A and B.

.EOR. A.EOR.B Bitwise logical EXCLUSIVE OR of A
and B.

The last class of operators is the relational operators. These are used in the IF and
WHILE statements to test whether one expression is less than, greater than, or equal to
another expression. The relational operators are:

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 12 http://www.micronator.com

SYMBOL EXAMPLE MEANING

= A=B True if A is equal to B
<> A<>B True if A is not equal to B
< A<B True if A is less than B
> A>B True if A is greater than B
<= A<=B True if A is less than or equal to B
>= A>=B True if A is greater than or equal

to B

1.7 Operator Precedence:

Overall operator precedence is shown below. The operator at the top of the list has the
highest priority in any expression, while the operator at the bottom has the lowest priority.

() Expressions enclosed in parenthesis
NOT Unary minus and NOT (one's complement)
* / \ Multiplication, division, and Mod (remainder)
+ - Addition and subtraction
= Relational operators
<>
<
>
<=
>=
.AND. All logical operators have the same precedence
.OR.
.EOR.

1.8 Operating Modes:

BASIC11 has two operating modes, the RUN mode and the immediate Mode. In the
RUN mode program lines that have previously been entered are executed starting with the
smallest line number and continues until a STOP or END statement is executed, an error
occurs, or an “Alternate-C” is typed on the terminal.

In the immediate Mode, any legal BASIC11 statement or command may be typed in
without a line number and the statement will immediately be executed. BASIC11 may be used
in this mode to debug programs by examining variables, memory locations, or I/O ports.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 13

1.9 Remarks:

It is a good idea to place remarks throughout your programs so that someone else can
understand the operation of your program if it ever becomes necessary to change it. It can
even help you if you haven't worked with the program in a while. Even though the REM state-
ment is not executable it may be referenced by other program statements (for example, by a
GOTO or GOSUB statement).

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 14 http://www.micronator.com

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 15

CHAPTER 2

COMMANDS OF BASIC11

2.1 Commands

Commands are instructions to BASIC11 that allow it to perform “housekeeping” tasks
at the user’s request. None of the following commands may appear in a BASIC11 program.

CLEAR

The clear command is used to set all variables to zero and to reset the GOSUB,
WHILE, and FOR - NEXT stacks. A clear is automatically performed when a RUN command
is entered.

CONT

The CONT command is used to restart a BASIC11 program either after it has been
stopped by either a STOP statement or an “Alternate-C” was typed at the terminal. The pro-
gram can't be restarted if an error occurred in the program or if the program is modified.

LIST

LIST Lists the entire program
LIST [line #] Lists one line
LIST [line #]-[line #] Lists from the first line num-

ber
 through the second line number

The LIST command can be used to display selected lines of the program on the termi-
nal. As can be seen from the above examples, all, part, or a single line of the program may be
listed.

LLIST

LLIST [line #]
LLIST [line #]-[line #]

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 16 http://www.micronator.com

The LLIST works in the same manner as the LIST command, except that the program
lines are sent to the system printer instead of the terminal.

†NOTE: MicroNator defines the system printer as the monitor screen.

NEW

The NEW command is used to clear out both the BASIC program buffer and the vari-
able storage space. It prepares BASIC11 to accept a “New” program.

RUN

The RUN command is used to begin execution of the program that is currently in
memory.

ESAVE

The ESAVE command is used to save the program that is currently in RAM to the pro-
gram storage EEPROM that resides in the system. The EEPROM storage is from $8000
[32,76810] to $DDFF [56,83110].

†NOTE: Each byte takes 10 msec to be written to the EEPROM so be patient...

†NOTE: The program can be as large as 24,054 bytes if stored in EEPROM.

($8000-$8009) [32,76810 - 32,77710] reserved for pointers,
($800A-$CFFF) [32,77810 - 53,24710] for the user program,
($D000-$DDFF) [53,24810 - 56,83110] for the user callable assembler sub-
routines.

†NOTE: The program can be as large as 27,761 bytes if used only in RAM.

($1040-$7CB0) [4,16010 - 31,92010] start and end of user program usable
RAM

†NOTE: If the user wants RAM for storage area, he can use from $7CB0 [31,92010]
and down.

 ELOAD

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 17

The ELOAD command is used to transfer a program to RAM that had previously been
saved using the ESAVE command.

AUTOST

The AUTOST command is used to set a flag that resides in the program storage
EEPROM that will allow the BASIC11 program to execute from a powerup or reset condition.

 †NOTE: When AUTOST is on, BASIC11 program is executed out of the program
storage EEPROM and is not copied into RAM. This allows the entire system RAM to be used
for variable storage.

NOAUTO

This command resets the auto start flag set by the AUTOST command and disables the
automatic execution of a BASIC program stored in the program storage EEPROM.

FREE

The FREE command may be used to Display the amount of RAM memory that is cur-
rently available for BASIC11 program statements and variables.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 18 http://www.micronator.com

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 19

CHAPTER 3

STATEMENTS OF BASIC11

All of the following statements are used in the creation of BASIC11 programs. The
statements are arranged in logical groups to make similar functions easy to find. Each state-
ment is accompanied by one or more program lines showing it's proper usage and an explana-
tion of how the statement works if necessary.

3.1 Assignment:

 DATA <line number> DATA <number> [,<number>,<number>...]

10 DATA 500,-10,200,99,$CD03
20 DATA $FE, 1000, -300

The data statement is used to specify data that will be assigned to variables with a
READ statement. The data is read from left to right and always begins with the first data state-
ment in the program. When the program has read all the data in a single DATA statement,
BASIC11 will search the program for the next DATA statement starting at the line following
the just exhausted DATA line. This is done because all data statements in a program are con-
sidered logically to be one long DATA statement.

LET <line number> LET <variable>=<expression>

10 LET X=5
20 LET Y=25*(Y/3)
30 LET AX(3)=AX(5)*10
40 CD=DE+23
50 XZ=-55

The LET statement is the most often used way to assign a value to a variable. Notice in
line numbers 40 and 50 above do not contain the keyword LET. This is what is known as an
implied LET and is a feature of BASIC11 to help cut down typing time when entering a pro-
gram since this is one of the most often used statements.

†NOTE: As stated earlier, assignment statements and arithmetic/logic statements may
contain no imbedded spaces. This means that there may be no spaces between the variable and
equals, the equal and the start of the expression, and no spaces within the expression.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 20 http://www.micronator.com

READ <line number> READ <variable> [,<variable>,<variable>,...]

READ A,B,C

The READ statement is used in conjunction with the DATA statement to assign values
to variables. The first time the READ statement is executed, it will assign the first item in the
first DATA statement to the first variable in its variable list. If additional variables are present
in its variable list, each one will sequentially be assigned the next item in the DATA state-
ment. Care must be taken when a program is written so that BASIC11 does not try to read past
the last item in the last DATA statement. If this happens, Error # 38 (Out of Data in “READ”
or “RESTORE” Statement) will be issued.

RESTORE <line number> RESTORE

330 RESTORE

The RESTORE statement is used to reset BASIC11's internal “pointer to the next
item” in a DATA statement to the first item in the first DATA statement that appears in the
program.

EEP() <line number> EEP(<expression>)=<expression>

25 EEP(30)=$55
30 EEP(X+1)=A/B

The EEP() statement is actually a special form of the implied LET. EEP() is actually a
subscripted variable that allows the BASIC program to directly write a word (2 bytes) to the
external EEPROM ($8000 to $DDFE). Writing to the BASIC11 program ($DE00-$FFFF)
area is not allowed. The high byte is written to the low address then the low byte is written to
the high address. All the timing and control information necessary to write to the EEPROM is
taken care of by BASIC11. This feature makes it very convenient to save any kind of calibra-
tion data that must be retained in the event of a power failure. Currently the subscript of the
EEP() statement is limited to $8000-$DDFE.

†NOTE: It takes 10 msec to write a byte in the external EEPROM.

CAUTION: Since the number of write/erase cycles of the EEPROM is guaranteed to
about 100,000 times, be very careful that the EEP() statement doesn't get executed repeatedly
for the same location by having it reside within a loop.

†NOTE: The routine that writes to the EEPROM disables, for 10 msec, the IRQ while
it is writing. This means that he TIME function in BASIC11 is not updated while the EEP()

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 21

functions is executing.

#10 EEP($9000)=$ABCD
#20 I=PEEK($9000)
#30 J=PEEK($9001)
#40 PRINT HEX2(I), HEX2(J)
#RUN
AB CD

†NOTE: Beware that the ESAVE program storage area begins at $8000 and ends at
$DDFF. Use the FREE command to calculate the beginning of your safe storage area.

PORTA
PORTB
PORTC
PORTD <line number> PORTx=<expression>

75 PORTA=$A5
85 PORTA=X+(E-K)

The PORTx statement is also a special form of the implied LET statement. It allows
BASIC11 to directly assign an 8-bit value to one of the MC68HC11's I/O ports.

†NOTE: For a logic value to actually appear on one of the port pins, that particular pin
must have been programmed as an output by using the POKE() statement to write a “1” to that
particular port's Data Direction Register (DDR). If a value of greater than 255 ($FF) is written
to a port, Error #46 (Tried to Assign a Value of < 0 or > 255 to a PORT) will be issued.

†NOTE: Please take notice that PORTB and PORTC are taken by data and address in
MicroNator multiplex mode. Port PD2..PD5 are used for the SPI communication but can be
used for other purposes.

TIME <line number> TIME=<expression>

65 TIME=0
75 TIME=SC/60

The TIME statement, like the EEP() and PORTx statement, is a special form of the
implied LET statement that allows the BASIC program to assign a value to the system vari-
able TIME which is used as BASIC11's “Real Time Clock”. BASIC11 uses the output com-
pare one (OC1) register to generate a periodic interrupt which is then divided down by
software so that the variable TIME is incremented once per second. Since the variable is a 16

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 22 http://www.micronator.com

bit number, elapsed time can be kept track of for 65536 seconds (approximately 18 hours)
without any software overhead.

See MicroNator user’s manual for the MC146818 RTC (Real Time Clock) and func-
tions.

PACC <line number> PACC=<expression>

85 PACC=25
95 PACC=-5.AND.$00FF

Like the TIME, EEP(), and PORT statements, PACC statement is a special form of the
implied LET statement that allows the programmer to directly alter the value of the
MC68HC11s Pulse Accumulator. Since the Pulse Accumulator is only an eight bit register,
the value must be in the range 0 <= expression <= 255 or Error #53 (Tried to assign a value of
<0 or >255 to PACC) will be issued.

3.2 Control Transfer:

GOSUB <line number> GOSUB <line number>

100 GOSUB 1000

The GOSUB statement is used to transfer control of the program to the subroutine
whose line number follows the GOSUB statement. The last statement of any subroutine
should be a RETURN statement which will return control back to the statement following the
GOSUB.

RETURN <line number> RETURN

1100 RETURN

As mentioned above the RETURN statement should be the last executed statement in
a subroutine and will return program execution to the statement following the GOSUB.

GOTO <line number> GOTO <line number>

50 GOTO 10

The GOTO statement is used just to transfer control of program execution to the line

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 23

number following the GOTO statement.

ON GOSUB <line number> ON <expression> GOSUB <line number> [,<line num-
ber>,......]

200 ON X+1 GOSUB 10,90,300,550

The ON - GOSUB statement provides a facility to allow BASIC11 to decide which of
a number of subroutines to execute based on the value of an expression. When the expression
is evaluated, the resulting number is used to pick one of the line numbers following the
GOSUB it should execute. In the above example if X were equal to 0, the expression would
evaluate to 1 and the subroutine starting at line 10 would be executed. If X were equal to 1,
then the subroutine at line 90 would be executed and so on. If the expression evaluates to 0, a
negative number or a number that is greater than the number of lines listed after the GOSUB,
Error #32 (“ON” argument is Negative, Zero, or Too Large) will be issued.

ON GOTO <line number> ON <expression> GOTO <line number> [,<line num-
ber>,....<line number>]

500 ON X GOTO 100,200,300,400,500

The ON - GOTO statement works in basically the same manner as the ON - GOSUB
except that control is transferred directly to the line number that is selected from the list fol-
lowing the GOTO. No return address is saved and hence control cannot be returned to the
statement following the ON - GOTO statement.

3.3 Conditional Tests:

IF THEN <line number> IF <expression> THEN <line number>

55 IF A=1 THEN 200
70 IF A=1.AND.B=1 THEN 500

The IF - THEN statement is used to transfer control of the program to another state-
ment based on the results of the evaluation of the expression. If the expression is true (evalu-
ates to any non-zero value) then control is transferred to the statement at the line number
following THEN. If the expression evaluates as false (equal to zero) then the next sequential
statement in the program will be executed. Notice in the second example that multiple condi-
tions may easily be tested in a single IF statement by use of the logical operators.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 24 http://www.micronator.com

IF THEN ELSE

IF <expression> THEN <line number> ELSE <line number>

75 IF PORTA=$FE THEN 200 ELSE 300

This form of the IF - THEN statement is a slight variation in that if the expression is
evaluated as false control of the program is transferred to the line number following the ELSE
clause.

†NOTE: In the above examples a space follows the expression in the IF statement.
This IS REQUIRED so that BASIC11 will know where the expression ends. Failure to follow
the expression with a space will result in an Error being reported, most likely Error #6 (Illegal
Operator).

3.4 Input/Output:

INPUT <line number> INPUT [“string constant”,] <variable> [,<vari-
able>,....<variable>]

45 INPUT “ENTER THREE NUMBERS”,A,B,C
55 INPUT XE,ZE,PI

The input statement is one of the ways that a value may be assigned to a variable.
When the INPUT statement is executed, the prompt string, if present, will be printed on the
terminal followed by a question mark and will wait for the user to enter the requested data. If
the user enters less data than is requested, BASIC11 will respond by printing a question mark
on the next line and will wait for the next piece of data to be entered. This will continue until
all requested data has been entered by the user. If more data is entered by the user than was
requested by the INPUT statement, the excess will be ignored.

†NOTE that if the user responds to an INPUT statement with a “Alternate-C”, pro-
gram execution will be halted and BASIC11 will return to the command mode. The program
cannot be restarted by the use of the CONT command.

PRINT <line number> PRINT [variable, expression, “string constant”]

10 PRINT “THE VALUE OF X IS “; X
20 PRINT X,X*X,X/Z+3
30 PRINT X, Y, Z
35 PRINT A, B, C;
65 PRINT

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 25

The PRINT statement may be optionally followed by any combination of variables,
expressions, or string constants each separated by either a comma or semicolon. The signifi-
cance of separating the items in a PRINT statement by either a comma or a semicolon is
explained below.

BASIC11 divides each output line into “fields” of eight (8) characters. When the argu-
ments following a PRINT statement are separated by commas, BASIC11 will print each item
beginning at the next field in the line. In line 30 in the above example, BASIC11 would print
the value of variable X beginning in column 0, the value of variable Y would be printed start-
ing in column 8 and the value of variable Z would be printed starting in column 16.

Separating variables with semicolons effectively disables this “fielding” feature by
printing variables and constants next to one another. There will still be a space or two between
successive numerical expressions that are printed because each number is printed with one
trailing space. Also if a number is not negative a space will be printed in front of the number
in place of the minus sign.

Notice in line number 35 above that a semicolon (it could have been a comma) follows
the last variable. This has the effect of suppressing the normal carriage return/line feed
sequence that would normally be issued after printing the last expression.

As mentioned in the first paragraph, the argument list that follows the PRINT state-
ment is optional as is illustrated in the example of line 65 above. This form of the print state-
ment has the effect of printing only a blank line.

? <line number> ? [variable, expression, “string constant”]

The question mark can be entered instead of the keyword “PRINT” to save typing time
when entering a program or executing a line in the immediate mode. When entered in a pro-
gram line the question mark is replaced by the same token as the keyword PRINT. Because of
this, when the program line is listed the keyword PRINT will appear instead of the question
mark.

INBYTE <line number> INBYTE <variable>

10 INBYTE DC
20 INBYTE AX(Z)
30 INBYTE CV

The INBYTE statement is another way that a value may be assigned to a variable. The
INBYTE statement is similar to the input statement except that instead of expecting an ASCII

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 26 http://www.micronator.com

formatted number from the terminal device, it assigns the value of an ASCII byte to the vari-
able that follows it. If the statement in line 10 were executed and the character “Y” were typed
at the terminal, the variable DC would contain the decimal value 89 which is the numerical
value of the ASCII character “Y”.

3.5 Looping Constructs:

FOR <variable>=<expression> TO <expression> [STEP<expression>]

85 FOR X=1 TO 1000
90 FOR X=A TO B+C STEP 10
95 FOR X=100 TO 0 STEP -1

The FOR - NEXT statements are what is known as a deterministic looping construct
because the number of times the loop will be executed is determined at the start of the loop
when the FOR statement is executed. When a FOR statement is executed all instructions
between it and the matching NEXT will repeatedly execute until one of two conditions is met.
Each pass through the loop the STEP value is added to the value of the control variable. If the
STEP value is positive, the loop will be executed again if the control variable is less than or
equal to the value of the expression following TO. If the step value is negative the loop will be
executed again if the control variable is greater than or equal to the value of the expression
following the TO.

†NOTE: If no STEP value is supplied (it's optional) that a value of one (+1) is
assumed.

†NOTE: All of the expressions in the FOR statement are evaluated only once at the
start of the loop. This means that the terminating value and the step value may not be changed
in the body of the loop, however; since the control variable is the same as any other variable,
its value may be changed within the body of the loop. This would allow for exiting the loop
before it normally would.

†NOTE: The test of the control variable against the terminating value is actually per-
formed when the NEXT statement is executed, so the code between FOR and NEXT will be
executed at least once.

FOR - NEXT statements may be nested but they must each use their own separate con-
trol variable. Currently the maximum number of nested FOR - NEXT loops is eight (8). Loops
may be exited early by use of GOTO's however this is not good programming practice and is
not recommended.

†NOTE: In the above examples a space follows each of the expressions in the FOR
statement. This IS REQUIRED so that BASIC11 will know where the expression ends. Fail-

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 27

ure to follow each expression with a space will result in an Error being reported, most likely
Error #6 (Illegal Operator).

NEXT <line number> NEXT <variable>

100 NEXT X

The NEXT statement is used in programs to complete a FOR loop. The variable speci-
fied in the NEXT statement must be the same as the control in the matching FOR. If it is not,
Error #36 (Mismatched “FOR - NEXT” loop) will be issued and program execution will stop.
As mentioned above, the test to see whether the loop should be terminated or not is actually
performed when the NEXT statement is executed.

 WHILE <line number> WHILE <expression>

500 WHILE X<=10000

The WHILE - ENDWH statements are considered to be a non-deterministic type of
looping construct because the number of times the loop will execute is not determined at the
start of the loop. In fact since the expression following the WHILE statement is evaluated at
the start of the loop, the loop may never be executed if the expression is false (evaluates to
zero) upon entry of the loop. There is one important point that needs to be made about the
WHILE looping construct. The statements within the loop must contain a statement that
changes the value of the test expression following WHILE so that the expression eventually
becomes false otherwise the loop will never terminate and the statements bounded by WHILE
and ENDWH will execute forever!

The WHILE statement may be used as part of a multiple statement line, however; in
order to provide improved program readability and to show the structure of the program this
practice is discouraged.

WHILE - ENDWH loops may be nested up to eight (8) levels deep. WHILE loops
may be exited early by use of GOTO's however this is not good programming practice and is
not recommended.

 ENDWH <line number> ENDWH

600 ENDWH

The ENDWH statement is used only in conjunction with a matching WHILE state-
ment to enclose a group of lines within a loop. The effect of the ENDWH statement is to eval-

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 28 http://www.micronator.com

uate the expression following WHILE to determine whether the loop should be executed
again.

†NOTE The ENDWH statement may be part of a multi-statement line however, it
must be the first statement on the line.

3.6 Program Termination:

 STOP <line number> STOP

1000 STOP

The STOP statement is essentially a software break “Alternate-C” instruction. When
the STOP statement is executed, program execution is temporarily suspended and the mes-
sage:

STOPPED AT LINE # <line number>

is printed on the terminal. In the above example <line number> would be 1000. If no
alterations are made to the program after it has been suspended, execution may be restarted
with the CONT command. The first statement executed will be the one immediately following
the STOP statement.

END <line number> END

300 END

The END statement is used to terminate program execution. It does not have to be the
last statement and may appear anywhere in the program. In fact an end statement need not
appear anywhere in the program. If BASIC11 tries to execute past the end of the program, an
END statement will automatically be executed. Unlike the STOP statement, after an END
statement has been executed the program may not be restarted via the CONT command.

3.7 Real Time Event Statements:

In any control environment, events usually occur asynchronously with respect to main
program execution. To cope with this kind of environment the MC68HC11 was designed with
an extensive interrupt structure to support all of its on chip subsystems. The following state-
ments all provide control of interrupt driven events directly from BASIC11.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 29

ONTIME <line number> ONTIME <expression>,<line number>

25 ONTIME 120,500
35 ONTIME HR+1,200
95 ONTIME 0,500

In many control situations it is necessary to take periodic measurements or record cer-
tain events at fixed time intervals. The ONTIME statement frees the main program from hav-
ing to continuously check the value of the system variable TIME in order to determine when
to take a measurement or record an event. The ONTIME statement allows program control to
be transferred directly to an interrupt handling routine beginning at <line number> when the
value of <expression> matches the value of the system variable TIME. The value of <expres-
sion> may evaluate to any legal integer, however; if <expression> evaluates to zero (0) it has
the effect of disabling the ONTIME function.

One of two methods may be used to generate periodic interrupts using the ONTIME
statement. The first method involves zeroing the system variable TIME in the interrupt han-
dling routine with the statement TIME=0. This method may be used if continuous timekeep-
ing is not required by the system. The second method involves executing the ONTIME
statement in the interrupt routine, adding the desired time interval (in seconds) to the current
value of the system variable TIME. This second method should be used if continuous time-
keeping is required by the system. The following examples should clarify things.

First Method:

10 TIME=0
20 ONTIME 10,100
...
...
...
100 TIME=0
...
...
...
150 RETI

The above example will produce a timer interrupt every 10 seconds.

Second Method:

10 TIME =0
20 ONTIME 20,500
...
...
...

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 30 http://www.micronator.com

500 ONTIME TIME+20,500
...
...
...
550 RETI

The above example will produce a timer interrupt every 20 seconds.

ONIRQ <line number> ONIRQ <expression>,<line number>

10 ONIRQ 1,355
25 ONIRQ MD,225

The ONIRQ statement allows BASIC11 to directly handle interrupts that are gener-
ated by an active transition on the MC68HC11's IRQ pin. The <expression> following the
ONIRQ keyword is used to select the mode of the statement. If the expression evaluates to any
non-zero integer, the servicing of the IRQ interrupt by BASIC11 is enabled. If the expression
evaluates to zero (0), IRQ interrupts are effectively disabled. The <line number> following
the expression may be any legal BASIC11 line number.

ONPACC <line number> ONPACC <expression>,<expression>,<line number>

105 ONPACC 1,0,1000
255 ONPACC A,B,3000

The ONPACC statement allows the programmer to handle events associated with the
MC68HC11's Pulse Accumulator on an interrupt basis. The first expression following the
ONPACC keyword is used to set the operating mode of the pulse accumulator. The expression
must evaluate to a number from 0 through 4. The operating modes of the pulse accumulator
are described in the table below.

Mode Action On Clock

0 Disables the Pulse Accumulator
1 Falling Edge on PA7 Increments the Counter
2 Rising Edge on PA7 Increments the counter
3 A “0” on PA7 Inhibits E/64 from Incrementing Counter
4 A “1” on PA7 Inhibits E/64 from Incrementing Counter

The second expression is used to determine which of two events will cause an inter-
rupt to be generated by the pulse accumulator. If the expression evaluates to zero (0) then an
interrupt will be generated each time an active edge is detected on PA7 as described in the

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 31

table above. If it evaluates to 1, the pulse accumulator will generate an interrupt only when it
overflows from $FF to $00. The <line number> tells BASIC11 where the interrupt routine
begins when a Pulse Accumulator interrupt occurs.

For more information on the Pulse Accumulator subsystem, please refer to the
MC68HC11's data sheet.

 RETI <line number> RETI

485 RETI

All BASIC11 interrupt service routines must end with this statement. Failure to end an
interrupt routine with RETI will result in all successive interrupts being masked! This will
effectively stop the system TIME function.

SLEEP <line number> SLEEP

700 SLEEP

The SLEEP statement allows the MC68HC11 to be put into the 'Stop Mode' which is
its lowest power consumption mode. In the “Stop Mode”, all clocks, including the internal
oscillator, are stopped and all internal processing is halted. Recovery from the SLEEP state-
ment may be accomplished by either a processor RESET or a XIRQ interrupt. When an XIRQ
interrupt is used, BASIC11 will continue execution with the next BASIC program statement.
When a hardware RESET is used to exit the sleep mode, the action taken by BASIC11 will
depend on a couple of factors. If the “Auto Start” flag has been set with the AUTOST com-
mand, the BASIC program stored in external EEPROM/EPROM will automatically be exe-
cuted. If the “Auto Start” flag has not been set, BASIC11 will return to the command mode.

3.8 Miscellaneous Statements:

DIM <line number> DIM <subscripted variable> [,subscripted variable...]

10 DIM AX(100),DX(9),LK(1000)
20 DIM Z(A+5),D(X)
30 DIM X(0)

The DIM statement, which was discussed briefly in section 1.4 on page 9, is used to
allocate storage for subscripted variables when a program is run. As can be seen from the
example in line 20 above, the expression in parenthesis does not have to be a constant. This is
because array storage is dynamically allocated at runtime. This feature is especially nice in

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 32 http://www.micronator.com

control applications where memory is usually at a premium because large arrays don't have to
be dimensioned in advance to fit the worse case. All subscripted variables must appear in a
DIM statement before they may be used in an expression. Failure to do this will result in Error
24 (Undimensioned Array) being issued when the variable is referenced.

The storage required by subscripted integer variables is:

2*(<expression>+1)+2 bytes

Remember that all subscripts start at zero. In the example in line 10 above, the variable
AX(100) would actually create 101 integer variables, AX(0) through AX(100). Although it
may seem strange the example in line 30 is legal. This will create a single integer subscripted
variable X(0).

POKE <line number> POKE(<expression>,<expression>)

45 POKE($6000,$5A)
55 POKE(AD,X*5)

 The POKE statement allows the BASIC11 program to directly modify RAM mem-
ory or I/O locations not the external EEPROM. The first expression within the parenthesis is
the address at which the second expression will be stored. The first expression may evaluate to
any legal integer number ($0000-$7FFF). However the second expression must be in the
range 0 <= expression <= 255 since a byte location is being written to. If the second expres-
sion is outside the above range, Error #48 (Illegal Device Number). Care should be taken
when using this statement so that part of the BASIC11 program or its data are not overwritten
especially $0000-$00FF and $7CB1-$7FFF of the RAM as it is used by BASIC11 to store
variables, stack area, and special routines.

†NOTE If POKE is used to write in the range $7CB1-$FFFF MicroNator will become
unstable. It might be necessary to re-download BASIC11 again.

 REM <line number> REM [any text]

10 REM THIS IS A REMARK STATEMENT

The REM statement is used to insert comments about the operation or structure of a
program. Any text following the REM statement is ignored, so if it appears in a multiple state-
ment line, it should be the last statement on the line. If control is passed to a REM statement
by a GOTO GOSUB, etc., control is just passed to the line following the REM statement.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 33

TRON <line number> TRON

20 TRON

The TRON statement is used to turn the trace mode on. The trace mode, when turned
on, will print line numbers in brackets as each line is executed. This can be used as an aid in
debugging programs.

TROFF <line number> TROFF

100 TROFF

The TROFF statement is used to turn the trace mode off.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 34 http://www.micronator.com

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 35

CHAPTER 4

BUILT IN FUNCTIONS OF BASIC11

BASIC11 has a number of built in functions that are used to perform common opera-
tions on numerical quantities, perform special calculations, call user written assembly lan-
guage subroutines, and access some of the special hardware features of the MC68HC11.

4.1 Mathematical Functions:

ABS(X)

The ABS function will return the ABSolute value of the expression in parenthesis. The
function will always return a positive number as its result.

FDIV(X,Y)

The FDIV function is used to perform an unsigned fractional divide using the
MC68HC11's FDIV instruction. This function allows BASIC11 to resolve fractional parts of
the remainder of an integer divide without using floating point math. The result is a binary
weighted decimal number. Some examples may clarify what the function does.

 3 / 4 = .75 decimal 3 / 4 = $C000 binary weighted decimal
 2 / 4 = .50 decimal 2 / 4 = $8000 binary weighted decimal
 1 / 4 = .25 decimal 1 / 4 = $4000 binary weighted decimal
 .99999... = $FFFF

For the function to execute properly X must be less than Y and Y may not be equal to
zero. If either condition exists Error #44 (Overflow or Divide by Zero in “FDIV()” Function)
will be issued and program execution will terminate.

RND(X)

The RND function will return a pseudo random number between 0 and 32767 inclu-
sive. The value of the argument X has the following effect on the function:

For X < 0 a new series of random numbers will be started by reading the current value
of the timer/counter and using it as the new seed value.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 36 http://www.micronator.com

For X = 0 a new random number will be returned each time the function is called.

For X > 0 the last random number that was generated is returned.

†NOTE that the function only generates pseudo random numbers and that a particular
series will repeat every 65536 calls of the function.

SGN(X)

The SGN function will return a plus one (1) if the argument is positive, zero (0) if the
argument is zero, and a minus one (-1) if the argument is negative.

4.2 Print Functions:

CHR$(X)

The CHR$ function will return a single character string whose ASCII value is the
argument X. This function is very useful for sending non-printable ASCII characters to an
output device. The value of the argument X must be in the range 0 <= X <= 255 or Error #43
(Argument < 0 or > 255 in “CHR$()” Function) will be issued. This function may only be
used in the PRINT statement.

HEX(X)

The HEX function is used to convert a binary number to a four digit hexadecimal
string. This function is very useful when printing the contents of memory locations or I/O
ports. This function may only be used in the PRINT statement.

HEX2(X)

The HEX2 function performs a similar operation to the HEX function except that it is
used to convert a number in the range 0 <= X <= 255 to a two digit hexadecimal string. If a
number outside the specified range is passed as an argument to the HEX2 function, Error #50
(Argument < 0 or > 255 in “HEX2()” Function) will be reported.

TAB(X)

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 37

The TAB function will move the cursor to column X on the output device. If the out-
put device is already past column X then no action is performed. The argument to the TAB
function must be in the range 0 <= X <= 255 or Error # 42 (Argument < 0 or > 255 in “TAB()”
Function) will be issued. This function may only be used in the PRINT statement.

4.3 Hardware Related Functions:

ADC(X)

The ADC function allows a program to directly access the MC68HC11's on board 8-
bit A-to-D converter. Any one of the eight channels may be read by calling the function with
the proper argument. If the argument is not in the proper range (between 0 and 7) Error #45
(Invalid Channel Number in “ADC()” Function) will be issued. The A-to-D converter is oper-
ated in the single channel mode and is converted four times. These four conversions are then
averaged by BASIC11 and the result is then returned. Since the A-to-D conversion time is fast
(26µs at 1.2290 MHz or 16µs at 2.0 MHz) this tends to help average out any noise in the read-
ing.

CALL(X)

Even though BASIC11 is extremely fast for an interpreted BASIC, there are still some
things that may need to be controlled that it can't keep up with. The CALL function allows
machine language subroutines to be called directly from BASIC11. The CALL function must
appear in an expression since it will return a 16-bit number as a result of the function call.
Some examples follow:

10 F=CALL($EAF0)
20 Z=CALL(AX*2)
30 PRINT CALL($100)

The users machine language program must only preserve the Y-index register, the
stack pointer, and the current state of the stack. All other registers may be destroyed. The
user’s subroutine is entered via a JSR (Jump to SubRoutine) instruction, therefore it must end
with the execution of an RTS (ReTurn from Subroutine) instruction. Generally the user’s sub-
routine should have about 100 bytes of stack space available. If more than this is needed, the
subroutine will have to allocate its own stack storage space.

This is where MicroNator comes in action. MicroNator with the help of “Alternate-L”
is able to download from the PC any assembler program in the S0-S9 format anywhere into
the external EEPROM or external RAM. Refer to MicroNator user manual for the “Alternate-
L” function.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 38 http://www.micronator.com

†NOTE: The “Alternate-L” function issues a RESET after the download so use it
before entering your BASIC11 program in RAM because RESET erases all the RAM area.

†NOTE: Make sure you don’t erase part of the BASIC11 program.

†NOTE: $D000-$DDFF is reserved for the user to place his routines.

EEP(X)

As mentioned in section earlier the EEP statement allows a BASIC11 program to
directly write a “WORD” of information to the MC68HC11’s external EEPROM when the
EEP statement appears to the left of the equal as a basic “statement”. When EEP appears on
the right side of the equals it will act like a function and will return the “BYTE” value cur-
rently stored in the location specified. It is identical to the PEEK(X).

Although X can be any location from $0000 to $DDFF, it is recommended to use it in
the range $00-$FF.

PEEK(X)

The PEEK function performs the opposite action of the POKE function. It allows
BASIC11 to directly retrieve the contents of any memory or I/O location in the MC68HC11's
memory map. The argument X, since it is an address, is taken to be an unsigned number so X
may take on any integer value. A single byte is returned by the function so its value will be >=
0 and <= 255.

PORTA
PORTB
PORTC
PORTD
PORTE

The PORTx functions are different from the other functions in that they do not require
an argument. Essentially these functions act as special variables that allow direct reading of
the MC68HC11's I/O ports from BASIC.

PORTC and PORTD are general purpose I/O ports and as such may have each pin of
the port programmed as either an input or an output. Each ports Data Direction Register
(DDR) is used to specify the primary direction of data on the I/O pin. If the corresponding port
pins DDR bit is set to a one (1) the port pin will be configured as an output. If the DDR bit is

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 39

cleared to a zero (0) the port pin will be configured as an input and will become high imped-
ance. When a bit which is configured for output is read, the value returned is the value at the
input to the pin driver. If a write is executed to a pin that is configured as an input, the value
will be stored in an internal latch so that if the pin is later configured as an output, the latched
value will then appear on the output

PORTA, PORTB, and PORTE are all fixed direction Ports with the exception of bit-7
of Port A. When PORTB is being used for general purpose outputs, it is configured for output
only and reads return the actual level sensed at the input of the pin drivers. When PORTA is
being used for general purpose I/O, bits 0,1, and 2 are configured as inputs and writes to these
bits have no effect or meaning. Bits 3, 4, 5, and 6 are configured for output only and reads
return the actual level sensed at the input of the pin drivers. Bit 7 of PORTA can be configured
as either an input or an output via the DDRA7 bit in the PORTA control register (PACTL).
PORTE contains the eight inputs to the A-to-D converter, however they may also be used as
digital inputs. Writes to the PORTE address have no meaning or effect.

For a more complete discussion of the function of the I/O subsystems contained in the
MC68HC11, it is suggested that the parts data sheet be consulted.

†NOTE: Please take notice that PORTB and PORTC are taken by data and address in
MicroNator multiplex mode. Port PD2..PD5 are used for the SPI communication but can be
used for other purposes.

TIME

Like the PORTx functions, the TIME function requires no arguments and is used to
retrieve the current value of the system time.

PACC

When the keyword PACC appears to the right of the equals sign it allows the program
to retrieve the current value of the Pulse Accumulator. Effectively PACC is a function that
requires no arguments.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 40 http://www.micronator.com

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 41

CHAPTER 5

ERROR REPORTING OF BASIC11

BASIC11 has an extensive error reporting structure that reports two basic types of
errors. The first category is command line errors. If a mistake is made by either typing an ille-
gal command or a syntax error is detected either in a program line or a statement that is to be
executed in the direct mode, BASIC11 will print the contents of the input buffer. On the next
line asterisks and arrows will be printed showing the approximate location of the error within
the line. Finally, a number is printed telling the operator what is wrong with the line. In the
example shown below programmer input is underlined.

#10 FOR X=1 100 STEP 2
10 FOR X=1 100 STEP 2
*********^^^
ERROR #17

READY

#

Looking up error #17 in the error table we find that we have inadvertently left out the
“TO” in the FOR statement. By retyping the line with “TO” between the 1 and 100 BASIC11
will accept the line.

When the programmer mistypes a command, Error number 3 (Invalid Expression) will
generally be issued. An example follows.

#LOST (what the programmer meant to type was LIST)
LOST
*^^^
ERROR #3

READY

#

The reason error number 3 is issued is that BASIC11 first searches its command table
to see if the programmer has typed a command. If no match is found, BASIC11 then searches
its statement table to try to match the input buffer with one of the keywords. If no match is
found, BASIC11 assumes that the statement is an implied LET. In the above example the first

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 42 http://www.micronator.com

two letters, “LO”, would be assumed to be a variable name, and the rules say that in an
implied (or declared) LET the assignment variable must be immediately followed by an
equals (“=”).

The second category of errors is runtime errors. These errors, which are context
dependent, occur while the program is running. All runtime errors are considered to be fatal in
BASIC11 and will immediately terminate program execution. A message will be printed on
the terminal indicating what error occurred and in which line it occurred. Even though
BASIC11 does not list the source line for runtime errors, the error number is specific enough
that the problem can easily be identified.

A list of error numbers and their meanings follows.

 Error # Meaning

1 Line number < 0 or > 32767
2 Syntax Error
3 Invalid Expression
4 Unbalanced Parenthesis
5 Data Type Mismatch
6 Illegal Operator
7 Illegal Variable
8 Illegal Token
9 Out of Memory
10 Integer Overflow
11 Invalid Hex Digit
12 Hex Number Overflow
13 Missing Quote
14 Missing Open or Closing Parenthesis
15 Syntax Error in “ON” Statement
16 Missing “THEN” in an “IF” Statement
17 Missing “TO” in a “FOR” Statement
18 Line Number Zero (0) Not Allowed
19 Illegal Data Type
20 Expression Too Complex
21 Missing Comma
22 Missing Comma or Semicolon
23 Math Stack Overflow
24 Undimensioned Array
25 Subscript Out of Range
26 Divide By Zero
27 Line Number Not Found
28 Too Many Nested “GOSUB's” (maximum is eight)
29 “RETURN” without “GOSUB”

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 43

30 Too Many Active “WHILE's” (maximum is eight)
31 “ENDWH” without “WHILE”
32 “ON” argument is Negative, Zero, or Too Large
33 Non-subscriptable Variable Found in “DIM” statement
34 Variable has Already Been DIMensioned
35 Too Many Active “FOR - NEXT” loops (maximum is eight)
36 Mismatched “FOR - NEXT” loop
37 Can't Continue
38 Out of Data in “READ” or “RESTORE” Statement
39 Negative Subscripts Not Allowed
40 “EEP()” Subscript Negative or > 255
41 Function Only Allowed in “PRINT” Statement
42 Argument < 0 or > 255 in “TAB()” Function
43 Argument < 0 or > 255 in “CHR$()” Function
44 Overflow or Divide by Zero in “FDIV()” Function
45 Invalid Channel Number in “ADC()” Function
46 Tried to Assign a Value of < 0 or > 255 to a PORT
47 Illegal PORT
48 Illegal Device Number
49 Uninitalized I/O Vector
50 Argument < 0 or > 255 in “HEX2()” Function
51 Statement not allowed in immediate mode
52 RETI executed when not in an interrupt routine
53 Tried to assign a value of <0 or >255 to PACC
54 Interrupt or Count mode error in ONPACC
55 Program storage EEPROM is too small
56 EEPROM range not legal to be written by user

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 44 http://www.micronator.com

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 45

APPENDIX A

Interrupt Vector Table:

All twenty of the interrupt vectors for the different subsystems on the MC68HC11 are
located in the memory map at locations $FFD6 through $FFFF. To provide for more flexibil-
ity in using the subsystems in an interrupt driven mode, the EEPROM hardware vectors
“point” to a second “JUMP” vector table located in RAM on page zero. The table, as shown
below, may be altered by the programmer to point to special interrupt handlers for a particular
application. The PACCIE, PACCOVF, TOC1, and IRQI vectors are initialized by BASIC11
to point to its own interrupt routines for the various real time control functions provided by
BASIC11. The ILLOP, COP, and CMF vectors are initialized to jump to the start of
BASIC11. All the rest of the vectors point to an RTI instruction.

TABLE: 1 “JUMP” VECTOR TABLE LOCATED IN RAM ON PAGE ZERO

0439 009e ORG $009E
0440 *
0441 009e CONSTAT RMB 3 GET CONSOLE STATUS FOR BREAK ROUTINE.
0442 00a1 INCONNE RMB 3 GET BYTE DIRECTLY FROM CONSOLE FOR BREAK RTN.
0443 *
0444 00a4 ORG $00A4
0445 *
0446 00a4 INTABLE RMB 16 RESERVE SPACE FOR 8 DIFFERENT INPUT ROUTINES.
0447 00b4 OUTABLE RMB 16 RESERVE SPACE FOR 8 DIFFERENT OUTPUT ROUTINES.
0448 *
0449 *
0450 *
0451 *
0452 00c4 ORG $00C4 START OF RAM INTERRUPT VECTORS.
0453 *
0454 00c4 RAMVECTS EQU *
0455 00c4 SCISS RMB 3 SCI SERIAL SYSTEM.
0456 00c7 SPITC RMB 3 SPI TRANSFER COMPLETE.
0457 00ca PACCIE RMB 3 PULSE ACCUMULATOR INPUT EDGE.
0458 00cd PACCOVF RMB 3 PULSE ACCUMULATOR OVERFLOW.
0459 00d0 TIMEROVF RMB 3 TIMER OVERFLOW.
0460 00d3 TOC5 RMB 3 TIMER OUTPUT COMPARE 5.
0461 00d6 TOC4 RMB 3 TIMER OUTPUT COMPARE 4.
0462 00d9 TOC3 RMB 3 TIMER OUTPUT COMPARE 3.
0463 00dc TOC2 RMB 3 TIMER OUTPUT COMPARE 2.
0464 00df TOC1 RMB 3 TIMER OUTPUT COMPARE 1.
0465 00e2 TIC3 RMB 3 TIMER INPUT CAPTURE 3.
0466 00e5 TIC2 RMB 3 TIMER INPUT CAPTURE 2.
0467 00e8 TIC1 RMB 3 TIMER INPUT CAPTURE 1.
0468 00eb REALTIMI RMB 3 REAL TIME INTERRUPT.
0469 00ee IRQI RMB 3 IRQ INTERRUPT.
0470 00f1 XIRQ RMB 3 XIRQ INTERRUPT.
0471 00f4 SWII RMB 3 SOFTWARE INTERRUPT.
0472 00f7 ILLOP RMB 3 ILLEGAL OPCODE TRAP.
0473 00fa COP RMB 3 WATCH DOG TIMER FAIL.
0474 00fd CMF RMB 3 CLOCK MONITOR FAIL.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 46 http://www.micronator.com

TABLE: 2 BASIC11 EEPROM HARDWARE INTERRUPT VECTOR

7324 ffd6 ORG $FFD6 START OF VECTOR TABLE.
7325 ffd6 00 c4 FDB SCISS SCI SERIAL SYSTEM
7326 ffd8 00 c7 FDB SPITC SPI TRANSFER COMPLETE
7327 ffda 00 ca FDB PACCIE PULSE ACCUMULATOR INPUT EDGE
7328 ffdc 00 cd FDB PACCOVF PULSE ACCUMULATOR OVERFLOW
7329 ffde 00 d0 FDB TIMEROVF TIMER OVERFLOW
7330 ffe0 00 d3 FDB TOC5 TIMER OUTPUT COMPARE 5
7331 ffe2 00 d6 FDB TOC4 TIMER OUTPUT COMPARE 4
7332 ffe4 00 d9 FDB TOC3 TIMER OUTPUT COMPARE 3
7333 ffe6 00 dc FDB TOC2 TIMER OUTPUT COMPARE 2
7334 ffe8 00 df FDB TOC1 TIMER OUTPUT COMPARE 1
7335 ffea 00 e2 FDB TIC3 TIMER INPUT CAPTURE 3
7336 ffec 00 e5 FDB TIC2 TIMER INPUT CAPTURE 2
7337 ffee 00 e8 FDB TIC1 TIMER INPUT CAPTURE 1
7338 fff0 00 eb FDB REALTIMI REAL TIME INTERRUPT
7339 fff2 00 ee FDB IRQI IRQ INTERRUPT
7340 fff4 00 f1 FDB XIRQ XIRQ INTERRUPT
7341 fff6 00 f4 FDB SWII SOFTWARE INTERRUPT
7342 fff8 00 f7 FDB ILLOP ILLEGAL OPCODE TRAP
7343 fffa 00 fa FDB COP WATCH DOG FAIL
7344 fffc 00 fd FDB CMF CLOCK MONITOR FAIL
7345 fffe ec 50 FDB POWERUP RESET

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 47

APPENDIX B

TABLE: 3 “BASIC11” Memory Map

 * /*********** define variables ***********/

0000 ORG $0000
 *
 * char
 *
0000 IBUFPTR RMB 2 /* input buffer pointer */
0002 TBUFPTR RMB 2 /* token buffer pointer */
 *
 * the next 5 variables must remain grouped together
 *
0004 BASBEG RMB 2 /* start of basic program area */
0006 BASEND RMB 2 /* end of basic program */
0008 VARBEGIN RMB 2 /* start of variable storage area */
000a VAREND RMB 2 /* end of variable storage area */
000c HILINE RMB 2 /* highest line number in program buffer */
 *
 *
 *
000e BASMEND RMB 2 /* physical end of basic program memory */
0010 VARMEND RMB 2 /* physical end of variable memory */
 *
 * int
 *
0012 FIRSTLIN RMB 2 /* first line to list */
0014 LASTLIN RMB 2 /* last line to list */
0016 INTPTR RMB 2 /* integer pointer */
 *
 * short
 *
0018 ERRCODE RMB 1 /* error code status byte */
0019 IMMID RMB 1 /* immediate mode flag */
001a BREAKCNT EQU * /* also use for break check count */
001a COUNT EQU * /* count used in ESAVE & ELOAD routines */
001a IFWHFLAG RMB 1 /* translating IF flag */
001b TRFLAG RMB 1 /* trace mode flag */
001c CONTFLAG RMB 1 /* continue flag */
001d RUNFLAG RMB 1 /* indicates we are in the run mode */
001e PRINTPOS RMB 1 /* current print position */
001f NUMSTACK RMB 2 /* numeric operand stack pointer */
0021 OPSTACK RMB 2 /* operator stack pointer */
0023 FORSTACK RMB 2 /* FOR stack pointer */
0025 WHSTACK RMB 2 /* WHILE stack pointer */
0027 GOSTACK RMB 2 /* GOSUB stack pointer */
0029 CURLINE RMB 2 /* line # that we are currently interpreting */
002b ADRNXLIN RMB 2 /* address of the next line */
002d STRASTG RMB 2 /* dynamic string/array pool pointer */
002f FENCE RMB 2 /* varend in case of an error in xlation */
0031 IPSAVE RMB 2 /* interpretive pointer save for “BREAK” */
0033 DATAPTR RMB 2 /* pointer to data for read statement */
0035 RANDOM RMB 2 /* random number/seed */
0037 DEVNUM RMB 1 /* I/O device number */
0038 TIMEREG RMB 2 /* TIME register */
003a TIMECMP RMB 2 /* TIME compare register */

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 48 http://www.micronator.com

003c TIMEPRE RMB 1 /* software prescaler for TIME */
003d ONTIMLIN RMB 2 /* ONTIME line number to goto */
003f ONIRQLIN RMB 2 /* ONIRQ line number to goto */
0041 ONPACLIN RMB 2 /* ONPACC line number to goto */
0043 XONCH RMB 1 /* XON character for printer */
0044 XOFFCH RMB 1 /* XOFF character for printer */
0045 SCURLINE RMB 2 /* to save CURLINE during int. process */
0047 SADRNXLN RMB 2 /* to save ADRNXLIN during int. process */
0049 INBUFFS RMB 2 /* ptr to the start of the input buffer */
004b TKNBUFS RMB 2 /* ptr to the start of the token buffer */
004d EOPSTK RMB 2 /* end of operator stack */
004f STOPS RMB 2 /* start of operator stack */
0051 ENUMSTK RMB 2 /* end of operand stack */
0053 STNUMS RMB 2 /* start of operand stack */
0055 EFORSTK RMB 2 /* end of FOR - NEXT stack */
0057 STFORSTK RMB 2 /* start of FOR - NEXT stack */
0059 EWHSTK RMB 2 /* end of WHILE stack */
005b STWHSTK RMB 2 /* start of WHILE stack */
005d EGOSTK RMB 2 /* end of GOSUB stack */
005f STGOSTK RMB 2 /* start of GOSUB stack */
0061 IOBaseV RMB 2 /* Address vector for I/O Registers */
0063 DNAME RMB 3 /* to put the var name when doing a dump */
0066 SUBMAX RMB 2 /* */
0068 SUBCNT RMB 2 /* */
006a TOKPTR RMB 2 /* token pointer (used for list command) */
006c VarSize RMB 2 /* size of the variable table */
 *
 *+++++ if *>$9E
 *+++++ error “Ran out of Page 0 RAM”
 *+++++ endif
 *
009e ORG $009E
 *
009e CONSTAT RMB 3 GET CONSOLE STATUS FOR BREAK ROUTINE.
00a1 INCONNE RMB 3 GET BYTE DIRECTLY FROM CON FOR BREAK RTN
 *
00a4 ORG $00A4
 *
00a4 INTABLE RMB 16 RESERVE SPACE FOR 8 INPUT ROUTINES.
00b4 OUTABLE RMB 16 RESERVE SPACE FOR 8 OUTPUT ROUTINES.
 *
00c4 ORG $00C4 START OF RAM INTERRUPT VECTORS.
 *
00c4 RAMVECTS EQU *
00c4 SCISS RMB 3 SCI SERIAL SYSTEM.
00c7 SPITC RMB 3 SPI TRANSFER COMPLETE.
00ca PACCIE RMB 3 PULSE ACCUMULATOR INPUT EDGE.
00cd PACCOVF RMB 3 PULSE ACCUMULATOR OVERFLOW.
00d0 TIMEROVF RMB 3 TIMER OVERFLOW.
00d3 TOC5 RMB 3 TIMER OUTPUT COMPARE 5.
00d6 TOC4 RMB 3 TIMER OUTPUT COMPARE 4.
00d9 TOC3 RMB 3 TIMER OUTPUT COMPARE 3.
00dc TOC2 RMB 3 TIMER OUTPUT COMPARE 2.
00df TOC1 RMB 3 TIMER OUTPUT COMPARE 1.
00e2 TIC3 RMB 3 TIMER INPUT CAPTURE 3.
00e5 TIC2 RMB 3 TIMER INPUT CAPTURE 2.
00e8 TIC1 RMB 3 TIMER INPUT CAPTURE 1.
00eb REALTIMI RMB 3 REAL TIME INTERRUPT.
00ee IRQI RMB 3 IRQ INTERRUPT.
00f1 XIRQ RMB 3 XIRQ INTERRUPT.
00f4 SWII RMB 3 SOFTWARE INTERRUPT.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 49

00f7 ILLOP RMB 3 ILLEGAL OPCODE TRAP.
00fa COP RMB 3 WATCH DOG TIMER FAIL.
00fd CMF RMB 3 CLOCK MONITOR FAIL.
 *
 *+++++ RAMStart = $1040
 *+++++ RAMSize = $6EBF (EESTART - RAMStart - $0100 -1)
 *+++++ PROGRAM = $7CB0 (RAMStart + RAMSize - SWSTKSize + 1)
 *
1040 RAMStart EQU $1040 Start of the RAM
7cb0 LASTUSER EQU (RAMStart+RAMSize-SWSTKSize-1)
 * Highest possible byte for user program
 *
 * /*********** The rest of the RAM is reserved for BASIC11 ***********/
 *
7cb1 LOSTACK EQU (RAMStart+RAMSize-SWSTKSize)
 * Lowest possible byte for any stack
7eff HISTACK EQU (RAMStart+RAMSize)
 * Highest possible byte for any stack
 *
 * /*********** The last $0100 bytes reserved for BASIC11 special routine *****/

0100 SPECIAL EQU $0100 Special routines
7f00 RAMSAVE EQU (RAMStart+RAMSize+1)
7f03 NEWESAVE EQU RAMSAVE+3
7f5d NEWDLY EQU RAMSAVE+$5D
7f68 WXOFFRAM EQU RAMSAVE+$68
7f73 RAUTOSTF EQU RAMSAVE+$73
7fff LASTBAS EQU EESTART-1 Last RAM byte used by BASIC11
 *
 * /*********** Beginning of EEPROM ***********/
 *
8000 ORG EESTART Beginning of EEPROM
8000 SBASBEG RMB 2 pointer for start of basic program area
8002 SBASEND RMB 2 pointer for end of basic program
8004 SVARBEG RMB 2 pointer for start of variable storage area
8006 SVAREND RMB 2 pointer for end of variable storage area
8008 SHILINE RMB 2 pointer for highest line number in program buffer
800a AUTOSTF RMB 1 autostart flag
800b SSTART RMB 1 storage start
 *
d000 CALLBEG EQU EESTART+$5000 User assembler call subroutine storage
ddfe MAXEESUB EQU ROMBEG-2 maximum EEP subscript
ddff CALLEND EQU ROMBEG-1 End of user assembler call subroutine storage
de00 ROMBEG EQU $DE00 Begin of BASIC11
2200 ROMSIZE EQU $2200

ffd6 00 c4 FDB SCISS SCI SERIAL SYSTEM
ffd8 00 c7 FDB SPITC SPI TRANSFER COMPLETE
ffda 00 ca FDB PACCIE PULSE ACCUMULATOR INPUT EDGE
ffdc 00 cd FDB PACCOVF PULSE ACCUMULATOR OVERFLOW
ffde 00 d0 FDB TIMEROVF TIMER OVERFLOW
ffe0 00 d3 FDB TOC5 TIMER OUTPUT COMPARE 5
ffe2 00 d6 FDB TOC4 TIMER OUTPUT COMPARE 4
ffe4 00 d9 FDB TOC3 TIMER OUTPUT COMPARE 3
ffe6 00 dc FDB TOC2 TIMER OUTPUT COMPARE 2
ffe8 00 df FDB TOC1 TIMER OUTPUT COMPARE 1
ffea 00 e2 FDB TIC3 TIMER INPUT CAPTURE 3
ffec 00 e5 FDB TIC2 TIMER INPUT CAPTURE 2
ffee 00 e8 FDB TIC1 TIMER INPUT CAPTURE 1
fff0 00 eb FDB REALTIMI REAL TIME INTERRUPT
fff2 00 ee FDB IRQI IRQ INTERRUPT

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 50 http://www.micronator.com

fff4 00 f1 FDB XIRQ XIRQ INTERRUPT
fff6 00 f4 FDB SWII SOFTWARE INTERRUPT
fff8 00 f7 FDB ILLOP ILLEGAL OPCODE TRAP
fffa 00 fa FDB COP WATCH DOG FAIL
fffc 00 fd FDB CMF CLOCK MONITOR FAIL
fffe ec 50 FDB POWERUP RESET

TABLE: 4 “BASIC11” MEMORY MAP

TABLE: 5 “MicroNator” Reserved Memory

ADDRESS DESCRIPTION

$0000-$00ff Not used by MicroNator, free for the user or used by BASIC11
$0100-$01FF Other HC11 internal RAM, i.e. HC11E0, HC11E1, HC11E8...
$0200-$020F Reserved
$0210-$021F LCD & KBY expansion board
$0220-$022F UIO (Relays & Opto couplers) expansion board
$0230-$023F GAL Programmer expansion board

$0000

$0100

$0200
$0210
$0220
$0230
$0240

$027F
$0280

$02BF
$02C0

$0FFF
$1000

$103F
$1040

$7CB0
$7CB1

$7EFF
$7F00

$7FFF
$8000

$800A
$800B

$D000

$DDFE
$DDFF
$DE00

$FFD5
$FFD6

$FFFF

BASIC11 RAM for variables

Other HC11 internal RAM

Reserved 16 bytes
Reserved 16 bytes for LCD & KBY expansion board
Reserved 16 bytes for UIO expansion board
Reserved 16 bytes for GAL programmer expansion board

Spare Chip Select for WW area

If READ enables (HIGH) the RTC chip select for SPI
If WRITEn disabled (LOW) the RTC chip select for SPI

Reserved by 16 bytes increment for future expansion and I/O

HC11 registers

Used by BASIC11 for Stack area

Special routine for BASIC11

Start of EEPROM
The first 10 bytes are used for storage pointers

Used by BASIC11 to store USER program in RAM

Used by BASIC11 to store USER program in EEPROM with ESAVE

Free to USER to store assembler routines

MAX EEP() subscript
End of user assembler routines

BASIC11 interpreter

Vector table

$00FF

$01FF

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 51

$0240-$027F SPARE chip select for WW
$0280-$02BF *** If Read, enables (HIGH) the RTC chip select for SPI

*** If Written, disables (LOW) the RTC chip select for SPI
$02C0-$0FFF Reserved, by 16 bytes increment, for future expansion and I/O

TABLE: 6 MOTOROLA ASSEMBLER (AS11.EXE) HC11 REGISTERS

*ADDR LABEL DEFINITIONS

1000 REGS EQU $1000

0000 PORTA EQU 0 PORT A DATA REGISTER
0001 RESVD EQU 1 UNUSED
0002 PIOC EQU 2 PARALLEL I/O CONTROL REGISTER

* STROBE A FLAG
* 0= INACTIVE
* 1= SET AT ACTIVE EDGE OF STRA PIN

0080 STAF EQU %10000000
* STROBE A INTERRUPT ENABLE
* 0= NO HARDWARE INTERRUPT GENERATED
* 1= HARDWARE INTERRUPT REQ WHEN STAF=1

0040 STAI EQU %01000000
* PORT C WIRE-OR MODE
* 0= PORT C OUTPUTS NORMAL
* 1= OPEN DRAIN

0020 CWOM EQU %00100000
* HANDSHAKE/SIMPLE STROBE MODE SELECT
* 0= SIMPLE STROBE MODE
* 1= FULL HANDSHAKE MODES

0010 HNDS EQU %00010000
* OUTPUT/INPUT HANDSHAKE SELECT
* 0= INPUT
* 1= OUTPUT

0008 OIN EQU %00001000
* PULSE MODE SELECT FOR STRB OUTPUT
* 0= STRB LEVEL ACTIVE
* 1= STRB PULSES

0004 PLS EQU %00000100
* ACTIVE EDGE SELECT FOR STRA
* 0= HI TO LO (FALLING)
* 1= LO TO HI (RISING)

0002 EGA EQU %00000010
* INVERT STRB OUTPUT
* 0= STRB ACTIVE LOW
* 1= STRB ACTIVE HIGH

0001 INVB EQU %00000001
*

0003 PORTC EQU 3 PORT C DATA REGISTER
0004 PORTB EQU 4 PORTB DATA REGISTER
0005 PORTCL EQU 5 PORT C LATCHED DATA REGISTER
0006 RESVD1 EQU 6 UNUSED
0007 DDRC EQU 7 DATA DIRECTION REGISTER FOR PORT C
0008 PORTD EQU 8 PORT D DATA REGISTER
0009 DDRD EQU 9 DATA DIRECTION REGISTER FOR PORT D
000a PORTE EQU $A PORT E DATA REGISTER
000b CFORC EQU $B TIMER COMPARE FORCE REGISTER
0080 FOC1 EQU %10000000
0040 FOC2 EQU %01000000
0020 FOC3 EQU %00100000

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 52 http://www.micronator.com

0010 FOC4 EQU %00010000
0008 FOC5 EQU %00001000
000c OC1M EQU $C OUTPUT COMPARE 1 MASK REGISTER
0080 OC1M7 EQU %10000000
0040 OC1M6 EQU %01000000
0020 OC1M5 EQU %00100000
0010 OC1M4 EQU %00010000
0008 OC1M3 EQU %00001000
000d OC1D EQU $D OUTPUT COMPARE 1 DATA REGISTER
0080 OC1D7 EQU %10000000
0040 OC1D6 EQU %01000000
0020 OC1D5 EQU %00100000
0010 OC1D4 EQU %00010000
0008 OC1D3 EQU %00001000
000e TCNT EQU $E TIMER COUNTER REGISTER (2 BYTES)
0010 TIC1 EQU $10 TIMER INPUT CAPTURE REGISTERS (3 REGS, 6 BYTES
0012 TIC2 EQU $12
0014 TIC3 EQU $14

*
0016 TOC1 EQU $16 TIMER OUTPUT COMPARE REGISTERS (5 REGS, 10 BYTES)
0018 TOC2 EQU $18
001a TOC3 EQU $1A
001c TOC4 EQU $1C
001e TOC5 EQU $1E
0020 TCLT1 EQU $20 TIMER CONTROL REGISTER 1

* OMx OLx ACTION UPON SUCCESSFUL COMPARE
* 0 0 TIMER DISC FROM OUTPUT PIN
* 0 1 TOGGLE OCx OUTPUT LINE
* 1 0 CLEAR OCx OUTPUT LINE TO ZERO
* 1 1 SET OCx OUTPUT LINE TO ONE

0080 OM2 EQU %10000000
0040 OL2 EQU %01000000
0020 OM3 EQU %00100000
0010 OL3 EQU %00010000
0008 OM4 EQU %00001000
0004 OL4 EQU %00000100
0002 OM5 EQU %00000010
0001 OL5 EQU %00000001
0021 TCLT2 EQU $21 TIMER CONTROL REGISTER 2

* EDGxB EDGxA CONFIGURATION
* 0 0 CAPTURE DISABLED
* 0 1 CAPTURE ON RISING EDGES ONLY
* 1 0 CAPTURE ON FALING EDGES ONLY
* 1 1 CAPTURE ON ANY EDGE (RISING OR FALLING)

0020 EDG1B EQU %00100000
0010 EDG1A EQU %00010000
0008 EDG2B EQU %00001000
0004 EDG2A EQU %00000100
0002 EDG3B EQU %00000010
0001 EDG3A EQU %00000001
0022 TMSK1 EQU $22 MAIN TIMER INTERRUPT MASK REG 1
0080 OC1I EQU %10000000
0040 OC2I EQU %01000000
0020 OC3I EQU %00100000
0010 OC4I EQU %00010000
0008 OC5I EQU %00001000
0004 IC1I EQU %00000100
0002 IC2I EQU %00000010
0001 IC3I EQU %00000001
0023 TFLG1 EQU $23 MAIN TIMER INTERRUPT FLAG REG 1
0080 OC1F EQU %10000000

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 53

0040 OC2F EQU %01000000
0020 OC3F EQU %00100000
0010 OC4F EQU %00010000
0008 OC5F EQU %00001000
0004 IC1F EQU %00000100
0002 IC2F EQU %00000010
0001 IC3F EQU %00000001
0024 TMSK2 EQU $24 MISC TIMER INTERRUPT MASK REG 2
0080 TOI EQU %10000000 TIMER OVERFLOW INTERRUPT ENABLE
0040 RTII EQU %01000000 RTI INTERRUPT ENABLE
0020 PAOVI EQU %00100000 PULSE ACCUMULATOR OVERFLOW INTERRUPT ENABLE

* PULSE ACCUMULATOR INPUT INTERRUPT ENABLE
* 0= INTERRUPT INHIBITED
* 1= INTERRUPT REQUESTED IF FLAG SET

0010 PAII EQU %00010000
* PR1 PR2 PRESCALE FACTOR
* 0 0 1
* 0 1 4
* 1 0 8
* 1 1 16

0002 PR1 EQU %00000010
0001 PR0 EQU %00000001
0025 TFLG2 EQU $25 MISC TIMER INTERRUPT FLAG REG 2
0080 TOF EQU %10000000 TIMER OVERFLOW FLAG
0040 RTIF EQU %01000000 REAL TIME (PERIODIC) INTERRUPT FLAG
0020 PAOVF EQU %00100000 PULSE ACCUMULATOR OVERFLOW FLAG
0010 PAIF EQU %00010000 PULSE ACCUMULATOR INPUT EDGE FLAG
0026 PACTL EQU $26 PULSE ACCUMULATOR CONTROL REGISTER

* DATA DIRECTION FOR PA7
* 0= INPUT
* 1= OUTPUT

0080 DDRA7 EQU %10000000
* PULSE ACCUMULATOR SYSTEM ENABLE
* 0= DISABLED
* 1= ENABLED

0040 PAEN EQU %01000000
* PULSE ACCUMULATOR MODE
* 0= EVENT COUNTER
* 1= GATED TIME ACCUMULATION

0020 PAMOD EQU %00100000
* PULSE ACCUMULATOR EDGE CONTROL
* 0= FALLING EDGES, HIGH LEVEL ENABLES ACCUM
* 1= RISING EDGES, LOW LEVEL ENABLES ACCUM

0010 PEDGE EQU %00010000
* RTI INTERRUPT RATE
* RTR1 RTR0 DIV E BY
* 0 0 2^13
* 0 1 2^14
* 1 0 2^15
* 1 1 2^16

0002 RTR1 EQU %00000010
0001 RTR0 EQU %00000001
0027 PACNT EQU $27 PULSE ACCUMULATOR COUNT REGISTER
0028 SPCR EQU $28 SPI CONTROL REGISTER
0080 SPIE EQU %10000000 SPI INTERRUPT ENABLE
0040 SPE EQU %01000000 SPI SYSTEM ENABLE

* PORT D WIRE-OR MODE
* 0=PORT D OUTPUTS NORMAL
* 1=OPEN DRAIN

0020 DWOM EQU %00100000
* MASTER/SLAVE MODE SELECT

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 54 http://www.micronator.com

* 0=SLAVE MODE
* 1=MASTER MODE

0010 MSTR EQU %00010000
*
0008 CPOL EQU %00001000 CLOCK POLARITY
0004 CPHA EQU %00000100 CLOCK PHASE

* SPI CLOCK (SCK) RATE BIT
* SPR1 SPR0 E DIV BY
* 0 0 2
* 0 1 4
* 1 0 16
* 1 1 32

0002 SPR1 EQU %00000010
0001 SPR0 EQU %00000001
0029 SPSR EQU $29 SPI STATUS REGISTER
0080 SPIF EQU %10000000 SPI INTERRUPT REQUEST
0040 WCOL EQU %01000000 WRITE COLLISION STATUS FLAG
0010 MODF EQU %00010000 SPI MODE ERROR INTERRUPT STATUS FLAG
002a SPDR EQU $2A SPI DATA REGISTER
002b BAUD EQU $2B SCI BAUD RATE CONTROL REGISTER
0080 TCLR EQU %10000000 CLEAR BAUD COUNTER CHAIN (TEST ONLY)

* SERIAL PRESCALER SELECTS
* SCP1 SCP0 DIV E BY
* 0 0 1
* 0 1 3
* 1 0 4
* 1 1 13

0020 SCP1 EQU %00100000
0010 SCP0 EQU %00010000
0008 RCKB EQU %00001000 SCI BAUD RATE CLOCK TEST (TEST ONLY)

* SCI RATE SELECT BIT 2 THRU BIT 0
* SCR2 SCR1 SCR0 PRESC OUT DIV BY
* 0 0 0 1
* 0 0 1 2
* 0 1 0 4
* 0 1 1 8
* 1 0 0 16
* 1 0 1 32
* 1 1 0 64
* 1 1 1 128

0004 SCR2 EQU %00000100
0002 SCR1 EQU %00000010
0001 SCR0 EQU %00000001
002c SCCR1 EQU $2C SCI CONTROL REGISTER 1
0080 R8 EQU %10000000 RECEIVE BIT 8
0040 T8 EQU %01000000 TRANSMIT BIT 8

* MODE SELECT
* 0 = 1 START, 8 DATA, 1 STOP
* 1 = 1 START, 8 DATA, 9TH DATA, 1 STOP BIT

0010 M EQU %00010000
* WAKE = WAKE UP (BY ADDRESS MARK/IDLE)
* 0 = WAKE UP BY IDEL LINE
* 1 = WAKE UP BY ADDRESS MARK

0008 WAKE EQU %00001000
002d SCCR2 EQU $2D SCI CONTROL REGISTER 2
0080 TIE EQU %10000000 TRANSMIT INTERRUPT ENABLE
0040 TCIE EQU %01000000 TRANSMIT COMPLETE INTERRUPT ENABLE
0020 RIE EQU %00100000 RECEIVER INTERRUPT ENABLE

* IDLE LINE INTERRUPT ENABLE
* 0=INHIBIT INTERRUPTS
* 1=ENABLE INTERRUPTS

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 55

0010 ILIE EQU %00010000
0008 TE EQU %00001000 TRANSMITER ENABLE (TOGGLE TO QUEUE IDLE CHAR)

* RECEIVER ENABLE
* 0=OFF
* 1=ON

0004 RE EQU %00000100
* RECEIVER WAKE-UP CONTROL
* 0=NORMAL
* 1=RECEIVER ASLEEP

0002 RWU EQU %00000010
0001 SBK EQU %00000001 SEND BREAK
002e SCSR EQU $2E SCI STATUS REGISTER
0080 TDRE EQU %10000000 TRANSMIT DATA REG EMPTY FLAG
0040 TC EQU %01000000 TRANSMIT COMPLETE FLAG
0020 RDRF EQU %00100000 RECEIVE DATA REG FULL FLAG
0010 IDLE EQU %00010000 IDLE LINE DETECTED FLAG
0008 OR EQU %00001000 OVER-RUN ERROR FLAG
0004 NF EQU %00000100 NOISE ERROR FLAG
0002 FE EQU %00000010 FRAMING ERROR FLAG

* SCI DATA REGISTER
002f SCDR EQU $2F RECEIVE AND TRANSMIT DOUBLE BUFFERED
0030 ADCTL EQU $30 A/D CONTROL/STATUS REGISTER
0080 CCF EQU %10000000 CONVERSIONS COMPLETE FLAG (SETS AFTER 4TH CONVERSION)

* CONTINUOUS SCAN CONTROL
* 0=4 CONVERSIONS AND STOP
* 1=CONVERT CONTINUOUSLY

0020 SCAN EQU %00100000
* MULTIPLE CHANNEL/SINGLE CHANNEL CONTROL
* 0=CONVER SINGLE CHANNEL
* 1=CONVERT FOUR CHANNEL GROUP

0010 MULT EQU %00010000
* CD CC CB CA CHANNEL SIGNAL RESULT IN ADRX

*--
* 0 0 0 0 ADO PORT E0 ADR1
* 0 0 0 1 ADO PORT E1 ADR2
* 0 0 1 0 ADO PORT E2 ADR3
* 0 0 1 1 ADO PORT E3 ADR4
* 0 1 0 0 ADO PORT E4 ADR1
* 0 1 0 1 ADO PORT E5 ADR2
* 0 1 1 0 ADO PORT E6 ADR3
* 0 1 1 1 ADO PORT E7 ADR4
* 1 0 0 0 RESERVED ADR1
* 1 0 0 1 RESERVED ADR2
* 1 0 1 0 RESERVED ADR3
* 1 0 1 1 RESERVED ADR4
* 1 1 0 0 VREF HI ADR1
* 1 1 0 1 VREF LOW ADR2
* 1 1 1 0 VREF HI/2 ADR3
* 1 1 1 1 TEST/RESERVED ADR4

0008 CD EQU %00001000
0004 CC EQU %00000100
0002 CB EQU %00000010
0001 CA EQU %00000001

*
0031 ADR1 EQU $31 A/D RESULT REGISTERS
0032 ADR2 EQU $32
0033 ADR3 EQU $33
0034 ADR4 EQU $34

0035 RESVD2 EQU $35 UNUSED
0036 RESVD3 EQU $36 UNUSED

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 56 http://www.micronator.com

0037 RESVD4 EQU $37 UNUSED
0038 RESVD5 EQU $38 UNUSED

*
* SYSTEM CONFIGURATION OPTIONS

0039 OPTION EQU $39
* A TO D POWER UP
* 0= A/D SYSTEM POWERED DOWN
* 1= A/D SYSTEM POWERED UP

0080 ADPU EQU %10000000
* CLOCK SELECT
* SHOULD BE USED IF E LESS THAN 1MHZ
* 0= A/D & EE USE SYSTEM E CLOCK
* 1= A/D & EE USE AN INTERNAL R-C CLOCK

0040 CSEL EQU %01000000
* IRQ SELECT EDGE SENSITIVE ONLY (TIME PROTECTED)
* 0= IRQ CONFIGURED FOR LOW LEVEL
* 1= IRQ CONFIGURED FOR FALLING EDGES

0020 IRQE EQU %00100000
* ENABLE OSCILATOR START UP DELAY (EXITING FROM STOP)
* 0= NO DELAY
* 1= A DELAY IS IMPOSED

0010 DLY EQU %00010000
* CLOCK MONITOR ENABLE
* 0= DISABLED
* 1= SLOW OR STOPPED CLOCKS CAUSE RESET

0008 CME EQU %00001000
* COP TIMER RATE SELECT BITS
* CR1 CR0 E/2^15 DIV BY
* 0 0 1
* 0 1 4
* 1 0 16
* 1 1 64

0002 CR1 EQU %00000010
0001 CR0 EQU %00000001

* CR1 CR0 E/2^15 DIV BY
* ----------------------
* 0 0 1
* 0 1 4
* 1 0 16
* 1 1 64

003a COPRST EQU $3A ARM/RESET COP TIMER CIRCUITRY
003b PPROG EQU $3B EEPROM PROGRAMMING REGISTER
003c HPRIO EQU $3C

* READ BOOTSTRAP ROM (ONLY WRITABLE IF SMOD=1)
* 0= BOOT ROM NOT IN MAP (NORMAL)
* 1= BOOT ROM ENABLED

0080 RBOOT EQU %10000000
* INTERNAL READ VISIBILITY
* 0= NO VISIBILITY OF INTERNAL READS ON EXTERNAL BUS
* 1= DATA FROM INTERNAL READS IS DRIVEN OUT DATA BUS

0010 IRV EQU %00010000
* SPECIAL MODE SELECT
* MODB MODA MODE DESCR SMOD MDA
* ----------------------------------
* 1 0 SINGLE CHIP 0 0
* 1 1 EXPANDED MUX 0 1
* 0 0 BOOTSTRAP 1 0
* 0 1 SPECIAL TEST 1 1

0040 SMOD EQU %01000000
* MODE SELECT

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 57

0020 MDA EQU %00100000
* PRIORITY SELECT
* MAY ONLY BE WRITTEN IF I BIT IN CC REG IS 1
* PSEL3 PSEL2 PSEL1 PSEL0 INTERRUPT
* ----------------------------------
* 0 0 0 0 TIMER OVERFLOW
* 0 0 0 1 PULSE ACCUM OVERFL
* 0 0 1 0 PULSE ACC EDGE
* 0 0 1 1 SPI XFER COMPLETE
* 0 1 0 0 SCI SERIAL SYSTEM
* 0 1 0 1 RESERVED (DEFAULT IRQ)
* 0 1 1 0 IRQ (PIN OR PAR I/O)
* 0 1 1 1 REAL TIME INTERRUPT
* 1 0 0 0 TIMER INPUT CAPTURE 1
* 1 0 0 1 TIMER INPUT CAPTURE 2
* 1 0 1 0 TIMER INPUT CAPTURE 3
* 1 0 1 1 TIMER OUTPUT COMPARE 1
* 1 1 0 0 TIMER OUTPUT COMPARE 2
* 1 1 0 1 TIMER OUTPUT COMPARE 3
* 1 1 1 0 TIMER OUTPUT COMPARE 4
* 1 1 1 1 TIMER OUTPUT COMPARE 5

0008 PSEL3 EQU %00001000
0004 PSEL2 EQU %00000100
0002 PSEL1 EQU %00000010
0001 PSEL0 EQU %00000001

* RAM AND I/O MAPPING REGISTER

003d INIT EQU $3D
0080 RAM3 EQU %10000000
0040 RAM2 EQU %01000000
0020 RAM1 EQU %00100000
0010 RAM0 EQU %00010000
0008 REG3 EQU %00001000
0004 REG2 EQU %00000100
0002 REG1 EQU %00000010
0001 REG0 EQU %00000001

* FACTORY TEST REGISTER
* RESTRICTED TEST MODES ONLY

003e TEST1 EQU $3E
0080 TILOP EQU %10000000 TEST ILLEGAL OPCODE
0020 OCCR EQU %00100000 OUTPUT CONDITION CODE REG STAT TO TIMER PORT
0010 CBYP EQU %00010000 TIMER DIVIDER CHAIN BYPASS
0008 DISR EQU %00001000 DISABLE RESETS FROM COP AND CLOCK MONITOR
0004 FCM EQU %00000100 FORCE CLOCK MONITOR FAILURE
0002 FCOP EQU %00000010 FORCE COP WATCHDOG FAILURE
0001 TCON EQU %00000001 TEST CONFIGURATION

* CONFIGURATION CONTROL REGISTER
003f CONFIG EQU $3F

* SECURITY MODE DISABLE (MASK)
* 0=SECURITY MODE
* 1=NO SECURITY

0008 NOSEC EQU %00001000
* COP SYSTEM DISABLE
* 0=COP SYSTEM ENABLED (FORCES RESET ON TIMEOUT)
* 1=COP SYSTEM DISABLED

0004 NOCOP EQU %00000100
* ROM ENABLE
* 0= ROM IS NOT IN THE MEMORY MAP
* 1= ROM ON AT $E000 TO $FFFF

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 58 http://www.micronator.com

0002 ROMON EQU %00000010
* EEPROM ENABLE
* 0= EEPROM IS NOT IN THE MEMORY MAP
* 1= EEPROM ON AT $B600 TO $B7FF

0001 EEON EQU %00000001

* INTERRUPT VECTOR ASSIGNMENT

ffc0 RESVEC0 EQU $FFC0 RESERVED
ffc2 RESVEC1 EQU $FFC2 RESERVED
ffc4 RESVEC2 EQU $FFC4 RESERVED
ffc6 RESVEC3 EQU $FFC6 RESERVED
ffc8 RESVEC4 EQU $FFC8 RESERVED
ffca RESVEC5 EQU $FFCA RESERVED
ffcc RESVEC6 EQU $FFCC RESERVED
ffce RESVEC7 EQU $FFCE RESERVED
ffd0 RESVEC8 EQU $FFD0 RESERVED
ffd2 RESVEC9 EQU $FFD2 RESERVED
ffd4 RESVECA EQU $FFD4 RESERVED
ffd6 VECSCI EQU $FFD6 SCI SERIAL SYSTEM
ffd8 VECSPI EQU $FFD8 SPI SERIAL TRANSFER COMPLETE
ffda VECPAI EQU $FFDA PULSE ACC INPUT EDGE
ffdc VECPAO EQU $FFDC PULSE ACC OVERFLOW
ffde VECTOV EQU $FFDE TIMER OVERFLOW
ffe0 VECTO5 EQU $FFE0 TIMER OUTPUT COMPARE 5
ffe2 VECTO4 EQU $FFE2 TIMER OUTPUT COMPARE 4
ffe4 VECTO3 EQU $FFE4 TIMER OUTPUT COMPARE 3
ffe6 VECTO2 EQU $FFE6 TIMER OUTPUT COMPARE 2
ffe8 VECTO1 EQU $FFE8 TIMER OUTPUT COMPARE 1
ffea VECTI3 EQU $FFEA TIMER INPUT CAPTURE 3
ffec VECTI2 EQU $FFEC TIMER INPUT CAPTURE 2
ffee VECTI1 EQU $FFEE TIMER INPUT CAPTURE 1
fff0 VECRTI EQU $FFF0 REAL TIME INTERRUPT
fff2 VECIRQ EQU $FFF2 IRQ
fff4 VECXIRQ EQU $FFF4 XIRQ
fff6 VECSWI EQU $FFF6 SWI
fff8 VECILL EQU $FFF8 ILLEGAL OPCODE TRAP
fffa VECCOP EQU $FFFA COP FAILURE (RESET)
fffc VECCMF EQU $FFFC COP CLOCK MONITOR FAIL (RESET)
fffe VECRES EQU $FFFE RESET

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

59

INDEX

Symbols

 11, 12
- 11
$0280-$02BF 51
$02C0-$0FFF 51
$8000 to $DDFF 20
$DE00-$FFFF 20
$FFD4 45
$FFF 45
() 12
* 11
* / 12
+ 11
+ - 12
, TO 45
.AND. 11, 12
.EOR. 11, 12
.OR. 11, 12
/ 11
= 12
> 12
>= 12
? 25
“BASIC11” Memory Map 47
“MicroNator” Memory Map 50

Numerics

10 msec 20
100,000 times 20

A

A 12, 12
A*B 11
A+B 11
A/B 11
A=B 12
A>=B 12
A>B 12
A-B 11
AB 11, 12

ABS(X) 35
ADC(X) 37
ADCTL 55
ADR1 55
ADR2 55
ADR3 55
ADR4 55
Alternate-C 12, 15, 28
Alternate-L 37
Assignment 19
A-to-D 39
A-to-D converter 37
Auto Start 31
AUTOST 17

B

BASBEG 47
BASEND 47
BAUD 54
Bit 7 of PORTA 39
BUILT IN FUNCTIONS 35
BYTE 38

C

CALL(X) 37
CFORC 51
CHR$(X) 36
CLEAR 15
CMF 45
COMMANDS 15
Commands 15
Conditional Tests 23
CONFIG 57
CONT 15, 24, 28
Contents 5
Contents at a Glance 5
Control Transfer 22
COP 45
COPRST 56
COPYRIGHT NOTICE 3

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

60

INDEX

CPHA 54
CPOL 54

D

DATA 11, 19
Data Direction Register 21
DDR 21, 38
DDRA7 39
DDRC 51
DDRD 51
DIM 31
download 38

E

EEP() 20
EEP(X) 38
ELOAD 16
END 12, 28
ENDWH 27
ERROR REPORTING 41
ESAVE 16

F

FDIV(X,Y) 35
fields 25
FOR 26
FOR - NEXT 15
FOR NEXT 26
FREE 17

G

GOSUB 13, 15, 22, 32
GOTO 13, 22, 32

H

Hardware Related Functions 37
HC11 REGISTERS 51
HEX(X) 36
HEX2(X) 36

HPRIO 56

I

I/O port 38
I/O ports 21
IF THEN 23
IF THEN ELSE 24
ILLOP 45
INBYTE 10, 11, 25
INDEX 59
INIT 57
INPUT 10, 11, 24
INPUT# 25
Input/Output 24
Integer Constants 9
Interrupt Vector Table 45
IRQI 45

J

JSR 37
JUMP 45

L

LET 10, 19
Lines 9
LIST 15
LLIST 15
Looping Constructs 26

M

Mathematical Functions 35
MC146818 RTC 22
Memory Map 47, 50
Miscellaneous Statements 31
MODF 54

N

nested 26
NEW 16

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

61

INDEX

NEXT 27
NOAUTO 17
NOT 12
NOTE 3

O

OC1D 52
OC1M 52
ON GOSUB 23
ON GOTO 23
ONIRQ 30
ONPACC 30
ONTIME 29
Operating Modes 12
Operator Precedence 12
Operators 11
OPTION 56

P

PACC 22, 39
PACCIE 45
PACCOV 45
PACNT 53
PACTL 39, 53
page zer 45
PAOVI 53
PD2..PD5 21, 39
PEEK(X) 38
PIOC 51
POKE 32
PORTA 21, 38, 39, 51
PORTB 21, 38, 39, 51
PORTC 21, 38, 39, 51
PORTCL 51
PORTD 21, 38, 51
PORTE 38, 39, 51
PPROG 56
PREFACE 3
PRESCALE FACTOR 53
PRINT 24

Print Functions 36
Program Termination 28
Pulse Accumulator 39

R

RE 55
READ 10, 11, 20
Real Time Clock 21
Real Time Event Statements 28
REGS 51
REM 13, 32
Remarks 13
RESET 31
RESTORE 20
RETI 31
RETURN 22
RND(X) 35
RTI 45
RTII 53
RTS 37
RUN 16

S

S0-S9 37
SCCR1 54
SCCR2 54
SCDR 55
SCI BAUD RATE CLOCK TEST 54
SCI RATE SELECT 54
SCSR 55
SGN(X) 36
SLEEP 31
SPCR 53
SPDR 54
SPI 21, 39
SPSR 54
STATEMENTS 19
STOP 12, 28
Stop Mode 31
String Constants 9

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

62

INDEX

T

TAB(X) 36
Table of Contents 7
TCIE 54
TCLR 54
TCLT1 52
TCLT2 52
TCNT 52
TE 55
TEST1 57
TFLG1 52
TFLG2 53
THE BASICS 9
TIC1 52
TIC2 52
TIC3 52
TIE 54
TIME 21, 39
TMSK1 52
TMSK2 53
TOC1 52
TOC2 52
TOC3 52
TOC4 52
TOC5 52
TOI 53
trace mode 33
TROFF 33
TRON 33

V

VARBEGIN 47
VAREND 47
Variable Assignment 10

W

WARRANTY 3
WHILE 15, 27
WORD 38
write/erase cycles 20

X

XIRQ 31

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 63

Connector for
Power Input

Gnd

On/OffResetDB9
Communication

with the
IBM-PC

Bus

Pin #1

Connector

user WW I/O

SP1*
$0240-$027F

Connector for
CPU I/O

User
Wire-

Wrapped
Area

Reserved
to the
User

Power On LED
Scale: 1/1

Pin #2

E
E
P
R
O
M

X
28C

256

 Fig: 1 MicroNator System

RF-232
1404, rue Galt

Montréal Qc H4E 1H9
(514) 761-4201

0131

C
28C

256-35

