MicroNator

BASIC11

UNIVERSAL

DEVELOPMENT BOARD
Version 4.04a

BASIC11
Version 027

RF-232

http://www.micronator.com




ISBN 2-9803460-3-9

© Copyright 1996 by RF-232 (2968-6177 QUEBEC Inc.)
Dépbt L égal - Bibliothégue Nationale du Québec, novembre 1996.

PRINTED IN CANADA



MicroNator

UNIVERSAL

DEVELOPMENT BOARD
Version 4.04a

BASIC11
Version: 027

RF-232

http://www.micronator.com






MicroNator

MicroNator UNIVERSAL DEVELOPMENT BOARD BASIC11

All rights reserved. Printed in Montréal, Québec. No part of this book may be used or
reproduced in any form or by any means, or stored in a data-base or retrieval system, with-
out prior written permission of RF-232, except in the case of brief quotations embodied in
critical articles and reviews. Making copies of any part of this book for any purpose other
than your own personal useisaviolation of copyright laws. For information, contact:

RF-232
1404 rue Galt
Montréal, Qc H4E 1H9
CANADA
Tél: (514) 761-4201

RF-232
21 rue André Gide
59123 ZUYDCOOTE
FRANCE
Té: 03 28 58 28 39

micronator @micr onator.com

This book is sold as is, without warranty of any kind, either express or implied, respecting the contents of
this book, including but not limited to implied warranties for the book's quality, performance, merchant abil-
ity, or fitness for any particular purpose. Neither RF-232 nor its dealers or distributors shall be liable to the
purchaser or any other person or entity with respect to any liability, loss, or damage caused or alleged to be
caused directly or indirectly by this book.

| SBN 2-9803460-3-9
© Copyright 1994 by RF-232 (2968-6177 QUEBEC Inc.)
Dépbt L égal - Bibliotheque Nationale du Québec, novembre 1996






MicroNator UNIVERSAL DEVELOPMENT SYSTEM

MicroNator

UNIVERSAL
DEVELOPMENT BOARD

Basic1ll Manual

RF-232 reserves the right to make changes without further notice to any products
herein to improve reliability, function or design. RF-232 does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey
any licence under its patent rights nor the rights of others.

Information contained in this manual applies to
Version (4.04) MicroNator UNIVERSAL DEVELOPMENT BOARD
serial numbers 4000 through 9999

The computer program supplied with MicroNator System and to be written in the EEPROM
of the device may contains material copyrighted by RF-232, first published 1993, and may be
used only under alicence.

http://www.micronator.com Page 1



Page 2

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

PREFACE

BASIC11 is a very fast and complete control oriented BASIC interpreter for the MicroNator
MC68HC11 microcomputer system. It provides all the functions of standard BASIC along
with a number of enhancements that allow direct control of some of the MC68HC11's hard-
ware features using BASIC statements.

The only limitations of BASIC11 (which usually are not limitations in a control environment)
are that it only supports integer variables. Also strings are only supported in PRINT and
INPUT statements.

Lines entered into aBASIC11 program must begin with aline number and must be terminated
by a carrier return. Lines may be no longer than 80 characters. All lines are automatically put
in numerical order by BASIC11 asthey are typed in. Lines may be deleted from a program by
simply typing the line number followed immediately by a carriage return.

The syntax of each linein a BASIC11 program is checked as soon as a CARRIER RETURN
Is entered and any errors are reported immediately. This prevents the interpreter from having
to check syntax at runtime and is one of the things that contributes to BASIC11's speed.

WARRANTY

Even though many hours of work went into the writing and testing of BASIC11, it is believed
to be “bug free”, BASIC11 is supplied “as-is’ and without warranty. The author makes no
express or implied warranties as to the fitness of use and merchantability of the product. The
user assumes the entire risk as to its quality, performance and fitness of use.

In no event will the author be liable for direct, indirect, incidental, or consequential damages
resulting from the use of this product. Including but not limited to loss of sales, income, ser-
vice, profits, or potential profits.

In the event a situation is found where the program does not function as the manual describes,
the author will attempt to correct any errors brought to his attention, however he makes no
guarantee to do so.

COPYRIGHT NOTICE

The entire contents of this manual and the software described herein are copyrighted with all
rights reserved. No part of this manual or the software may be copied in whole or in part with-
out the express permission of the author.

TNOTE
MicroNator, CPU-11/64€2, and UCT-11/64e2 System refer to the same development system.

http://www.micronator.com Page 3



Page 4

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Contents at a Glance

THEBASICS .. ... 9
COMMANDS. . ... 15
STATEMENTS. .. .. ..., 19
BUILTINFUNCTIONS ..................... 35
ERROR REPORTING ....................... 41
INTERRUPT VECTOR TABLE ............... 45
INDEX .. 59

http://www.micronator.com

Page 5



Page 6

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Table of Contents

THEBASICSOFBASIC11.................... 9
Lines. ... 9
Integer Constants. ...................... 9
StringConstants. . ............... ... ..., 9
Variables: ............ ... .. ... ... . ... 9
Variable Assignment . .................. 10
Operators: . . ..o 11
Operator Precedence: ................... 12
OperatingModes. ..................... 12
Remarks, ............ ... . .. 13

COMMANDSOFBASIC11 .................. 15
Commands .................. ..., 15

STATEMENTSOFBASIC11................. 19
Assignment: ........... .. 19
Control Transfer: ...................... 22
Conditional Tests: ..................... 23
Input/Output: ............ ... .coi.... 24
Looping Constructs: . ................... 26
Program Termination: .................. 28
Real Time Event Statements: ............. 28

Miscellaneous Statements: .............. 31

BUILT IN FUNCTIONSOF BASIC11 ......... 35
Mathematical Functions. ................ 35
Print Functions. ....................... 36
Hardware Related Functions: .. ........... 37

ERROR REPORTING OF BASIC11 ........... 41

APPENDIX A ... . 45

APPENDIXB ....... ... ... i 47

INDEX . ... e 59

http://www.micronator.com

Page 7



Page 8

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

CHAPTER 1

THE BASICS OF BASIC11

1.1 Lines

Each line of a BASIC11 program must begin with a line number. Lines may be num-
bered from 1 through 32767 and each line must be terminated by a CARRIER RETURN.
Lines may contain multiple statements that are separated by colons. Spaces may be used
freely in BASIC11 statements to improve their readability with one exception. Assignment
statements and arithmetic/logic statements may contain no imbedded blanks. Some examples
follow:

10 PRI NT X, X*X, RND(0) - 5
20 X=5: Y=10: Zz=15

1.2 Integer Constants:

All integer constants are represented internally as 16 bit two's complement numbers
with adecimal range of -32768 to 32767 ($0000 to $FFFF in hex). In the source program and
input statements numbers may be represented in either decimal or hexadecimal form. All
hexadecimal constants must be prefixed by a dollar sign ($). Some examples of integer con-
stants are:

50 X=1000

60 Y=-55

70 Z=PEEK($E010)
1.3  String Constants:

As mentioned earlier, BASIC11 does not support string variables. However, it does
support string constants in both PRINT statements and INPUT statements to allow for
prompting of input data. Some examples of string constants follow:

100 PRINT “Pl ease Enter Your Nane”
200 I NPUT “Enter a Nunber”, N

1.4 Variables:

http://www.micronator.com Page 9



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

BASIC11 currently supports only integer variables. Integer variable names can consist
of asingle alphabetic |etter or aletter followed by another letter or number. Examples of inte-
ger variable names are:

AB, XZ,R1, TQO IF

Notice in the above example that two of the variables are the same as the BASIC11
keywords TO and IF. In many BASIC'sthisisillegal but in BASIC11 it is perfectly legal.

Any legal integer variable name may aso be subscripted or dimensioned using the
DIM statement. A variable is dimensioned by following any legal integer variable name by an
expression that is enclosed in parentheses.

TNOTE that when a variable is declared in a DIM statement storage is not alocated
until runtime. Thisisbecause all array storageis allocated dynamically. All dimensioned vari-
ables start with 0. For example:

300 DI M AX(4)
Will create the following five variables:
AX(0), AX(1)., AX(2), AX(3), AX(4)
Again, the same variable name may be used for both a non-dimensioned and dimen-
sioned variable. All dimensioned variables must be declared in a DIM statement before they

can be referenced in an expression or Error # 24 (Undimensioned Array) will result when the
variable is referenced during a program run.

1.5 Variable Assignment

By using the LET, INPUT, INBYTE, or the READ statements variables may be
assigned values. The most common way to assign a value to a variable is through the use of
the LET statement. For example, the statement:

90 LET GD=7

Would assign the integer value of 7 to the variable “ GD” so that each time the variable
“GD” isused in an expression, the numerical value of 7 would actually be substituted.

An INPUT statement, when executed, will cause BASIC11 to stop, print a question

mark on the terminal, and wait for the user to enter a numerical constant. For example, the
Statement:

Page 10 http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

40 | NPUT Al
will assign whatever number istyped at the terminal to the variable “A1”.

The INBY TE statement is similar to the input statement except that instead of expect-
ing an ASCII formatted number from the terminal input device, it assigns the value of the
ASCII byte to the variable that follows it. For example if the statement INBYTE AX were
executed and the character “Y” were typed at the terminal, the variable AX would contain the
value 89 which is the numerical value of the ASCII character “Y”. The INBY TE statement is
very useful for obtaining data from the control terminal.

The READ statement works almost like the INPUT statement except that the numeri-
cal constant istaken from a DATA statement instead of being typed in by a user from the ter-
minal (more about the READ and DATA statements later).

1.6 Operators:

There are three classes of operators available in BASIC11. The one most are familiar
with is the mathematical operators. Addition, subtraction, multiplication, and division. The
mathematical operators are:

SYMBOL EXAMPLE MEANING

+ A+B Add Ato B

- A-B Subtract B fromA

* A*B Mul tiply A and B

/ A B Divide A by B

\ A\ B Renmai nder of (A/B) or Modul o

The next class of operatorsisthelogical operators. They are used to perform “bitwise’
operations. They can be used to “ignore” certain bits within a word or in conditiona tests
when more than one condition needs to be tested. The logical operators are:

SYMBOL EXAMPLE MEANING

. AND. A. AND. B Bitwi se | ogical AND of A and B.

.OR A OR B Bitwi se logical OR of A and B.

. EOR. A . ECR B Bi twi se | ogi cal EXCLUSI VE OR of A
and B.

The last class of operators is the relational operators. These are used in the IF and
WHILE statements to test whether one expression is less than, greater than, or equal to
another expression. The relational operators are:

http://www.micronator.com Page 11



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

SYMBOL EXAMPLE MEANING

= A=B True if Ais equal to B

<> A<>B True if Ais not equal to B

< A<B True if Ais less than B

> A>B True if Ais greater than B

<= A<=B True if Ais less than or equal to B

>= A>=B True if Ais greater than or equal
to B

1.7 Operator Precedence:

Overall operator precedence is shown below. The operator at the top of the list has the
highest priority in any expression, while the operator at the bottom has the lowest priority.

() Expressi ons encl osed in parenthesis
NOT Unary m nus and NOT (one's conpl enent)
* [\ Mul tiplication, division, and Mdd (renai nder)
+ - Addition and subtraction
= Rel ati onal operators
<>
<
>
<=
>=
. AND. Al'l | ogical operators have the sane precedence
. OR
EOR.

1.8 Operating Modes:

BASIC11 has two operating modes, the RUN mode and the immediate Mode. In the
RUN mode program lines that have previously been entered are executed starting with the
smallest line number and continues until a STOP or END statement is executed, an error
occurs, or an “Alternate-C” istyped on the terminal.

In the immediate Mode, any legal BASIC11 statement or command may be typed in

without aline number and the statement will immediately be executed. BASIC11 may be used
in this mode to debug programs by examining variables, memory locations, or 1/0 ports.

Page 12 http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

1.9 Remarks:

It isagood idea to place remarks throughout your programs so that someone else can
understand the operation of your program if it ever becomes necessary to change it. It can
even help you if you haven't worked with the program in awhile. Even though the REM state-
ment is not executable it may be referenced by other program statements (for example, by a
GOTO or GOSUB statement).

http://www.micronator.com Page 13



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 14 http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

CHAPTER 2

COMMANDS OF BASIC11

2.1 Commands

Commands are instructionsto BASIC11 that allow it to perform “housekeeping” tasks
at the user’ s request. None of the following commands may appear in aBASIC11 program.
CLEAR

The clear command is used to set al variables to zero and to reset the GOSUB,
WHILE, and FOR - NEXT stacks. A clear isautomatically performed when a RUN command
IS entered.
CONT

The CONT command is used to restart a BASIC11 program either after it has been

stopped by either a STOP statement or an “Alternate-C” was typed at the terminal. The pro-
gram can't be restarted if an error occurred in the program or if the program is modified.

LIST
LI ST Lists the entire program
LIST [line #] Lists one |ine
LIST [line #]-[line #] Lists fromthe first [ine num
ber

t hrough the second |ine nunber
The LIST command can be used to display selected lines of the program on the termi-
nal. As can be seen from the above examples, al, part, or asingle line of the program may be
listed.
LLIST

LLIST [line #]
LLIST [line #]-[1ine #]

http://www.micronator.com Page 15



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

The LLIST works in the same manner as the LIST command, except that the program
lines are sent to the system printer instead of the terminal.

TNOTE: MicroNator defines the system printer as the monitor screen.

NEW

The NEW command is used to clear out both the BASIC program buffer and the vari-
able storage space. It prepares BASIC11 to accept a“New” program.
RUN

The RUN command is used to begin execution of the program that is currently in
memory.
ESAVE

The ESAVE command is used to save the program that is currently in RAM to the pro-
gram storage EEPROM that resides in the system. The EEPROM storage is from $8000
[32,768,0) to $DDFF [56,831,().

TNOTE: Each byte takes 10 msec to be written to the EEPROM so be patient...

TNOTE: The program can be as large as 24,054 bytesif stored in EEPROM.

($8000-$8009) [32,7681 - 32,7774¢) reserved for pointers,

($800A-$CFFF) [32,778,( - 53,247,] for the user program,
($D000-$DDFF) [53,248,( - 56,831,¢] for the user callable assembler sub-
routines.

TNOTE: The program can be aslarge as 27,761 bytesif used only in RAM.

($1040-$7CBO0) [4,160,( - 31,920,(] start and end of user program usable
RAM

TNOTE: If the user wants RAM for storage area, he can use from $7CBO0 [31,920,]

and down.

ELOAD

Page 16 http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

The ELOAD command is used to transfer a program to RAM that had previously been
saved using the ESAVE command.

AUTOST

The AUTOST command is used to set a flag that resides in the program storage
EEPROM that will allow the BASIC11 program to execute from a powerup or reset condition.

TNOTE: When AUTOST is on, BASIC11 program is executed out of the program

storage EEPROM and is not copied into RAM. This allows the entire system RAM to be used
for variable storage.

NOAUTO

This command resets the auto start flag set by the AUTOST command and disables the
automatic execution of a BASIC program stored in the program storage EEPROM.

FREE

The FREE command may be used to Display the amount of RAM memory that is cur-
rently available for BASIC11 program statements and variables.

http://www.micronator.com Page 17



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 18 http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

CHAPTER 3

STATEMENTS OF BASIC11

All of the following statements are used in the creation of BASIC11 programs. The
statements are arranged in logical groups to make similar functions easy to find. Each state-
ment is accompanied by one or more program lines showing it's proper usage and an explana-
tion of how the statement works if necessary.

3.1 Assignment:
DATA <line number> DATA <number> [, <number > <number>...]

10 DATA 500, - 10, 200, 99, $CD03
20 DATA $FE, 1000, -300

The data statement is used to specify data that will be assigned to variables with a
READ statement. The dataisread from left to right and always begins with the first data state-
ment in the program. When the program has read all the data in a single DATA statement,
BASIC11 will search the program for the next DATA statement starting at the line following
the just exhausted DATA line. Thisis done because all data statements in a program are con-
sidered logically to be onelong DATA statement.

LET <linenumber> LET <variable>=<expression>

10 LET X=5
20 LET Y=25*(Y/3)

30 LET AX(3)=AX(5)*10
40 CD=DE+23

50 XZ=-55

The LET statement isthe most often used way to assign avalueto avariable. Noticein
line numbers 40 and 50 above do not contain the keyword LET. Thisis what is known as an
implied LET and is a feature of BASIC11 to help cut down typing time when entering a pro-
gram since thisis one of the most often used statements.

TNOTE: As stated earlier, assignment statements and arithmetic/logic statements may

contain no imbedded spaces. This means that there may be no spaces between the variable and
equals, the equal and the start of the expression, and no spaces within the expression.

http://www.micronator.com Page 19



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

READ <line number> READ <variable> [,<variable>,<variable>,...]
READ A B, C

The READ statement is used in conjunction with the DATA statement to assign values
to variables. Thefirst time the READ statement is executed, it will assign the first item in the
first DATA statement to thefirst variable in itsvariable list. If additional variables are present
in its variable list, each one will sequentially be assigned the next item in the DATA state-
ment. Care must be taken when aprogram is written so that BASIC11 does not try to read past
the last item in the last DATA statement. If this happens, Error # 38 (Out of Datain “READ”
or “RESTORE” Statement) will be issued.

RESTORE <linenumber> RESTORE
330 RESTORE

The RESTORE statement is used to reset BASIC11's internal “pointer to the next
item” in a DATA statement to the first item in the first DATA statement that appears in the
program.

EEP() <line number> EEP(<expr ession>)=<expr ession>

25 EEP(30) =$55
30 EEP(X+1)=A/ B

The EEP() statement is actually a special form of theimplied LET. EEP() is actualy a
subscripted variable that alows the BASIC program to directly write aword (2 bytes) to the
external EEPROM ($8000 to $DDFE). Writing to the BASIC11 program ($DEOO-$FFFF)
areais not allowed. The high byte is written to the low address then the low byte is written to
the high address. All the timing and control information necessary to write to the EEPROM is
taken care of by BASIC11. Thisfeature makesit very convenient to save any kind of calibra-
tion data that must be retained in the event of a power failure. Currently the subscript of the
EEP() statement is limited to $8000-$DDFE.

TNOTE: It takes 10 msec to write a byte in the external EEPROM.
CAUTION: Since the number of write/erase cycles of the EEPROM is guaranteed to
about 100,000 times, be very careful that the EEP() statement doesn't get executed repeatedly

for the same location by having it reside within a loop.

TNOTE: The routine that writes to the EEPROM disables, for 10 msec, the IRQ while
it iswriting. This means that he TIME function in BASIC11 is not updated while the EER()

Page 20 http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

functions is executing.

#10 EEP($9000) =$ABCD

#20 | =PEEK( $9000)

#30 J=PEEK($9001)

#40 PRINT HEX2(1), HEX2(J)
#RUN

AB CD

TNOTE: Beware that the ESAVE program storage area begins at $8000 and ends at
$DDFF. Use the FREE command to calculate the beginning of your safe storage area.

PORTA
PORTB
PORTC
PORTD <line number> PORT x=<expr ession>

75 PORTA=$A5
85 PORTA=X+( E- K)

The PORTx statement is also a special form of the implied LET statement. It allows
BASIC11 to directly assign an 8-bit value to one of the MC68HC11's 1/O ports.

TNOTE: For alogic value to actually appear on one of the port pins, that particular pin
must have been programmed as an output by using the POK E() statement to writea®1” to that
particular port's Data Direction Register (DDR). If avalue of greater than 255 ($FF) iswritten
to aport, Error #46 (Tried to Assign aValue of <0 or > 255 to a PORT) will be issued.

TNOTE: Please take notice that PORTB and PORTC are taken by data and address in
MicroNator multiplex mode. Port PD2..PD5 are used for the SPI communication but can be
used for other purposes.

TIME <line number> TIM E=<expression>

65 TI ME=0
75 TI ME=SC/ 60

The TIME statement, like the EEP() and PORTXx statement, is a special form of the
implied LET statement that allows the BASIC program to assign a value to the system vari-
able TIME which is used as BASIC11's “Rea Time Clock”. BASIC11 uses the output com-
pare one (OC1) register to generate a periodic interrupt which is then divided down by
software so that the variable TIME is incremented once per second. Since the variableisa 16

http://www.micronator.com Page 21



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

bit number, elapsed time can be kept track of for 65536 seconds (approximately 18 hours)
without any software overhead.

See MicroNator user’s manual for the MC146818 RTC (Real Time Clock) and func-
tions.
PACC <line number> PACC=<expression>

85 PACC=25
95 PACC=-5. AND. $00FF

Likethe TIME, EEP(), and PORT statements, PACC statement isa special form of the
implied LET statement that allows the programmer to directly alter the value of the
MC68HC11s Pulse Accumulator. Since the Pulse Accumulator is only an eight bit register,
the value must be in the range 0 <= expression <= 255 or Error #53 (Tried to assign a value of
<0 or >255 to PACC) will beissued.

3.2 Control Transfer:
GOSuUB <line number> GOSUB <line number>
100 GOsUB 1000

The GOSUB statement is used to transfer control of the program to the subroutine
whose line number follows the GOSUB statement. The last statement of any subroutine
should be a RETURN statement which will return control back to the statement following the
GOSUB.

RETURN <linenumber> RETURN
1100 RETURN

As mentioned above the RETURN statement should be the last executed statement in
a subroutine and will return program execution to the statement following the GOSUB.
GOTO <line number> GOTO <line number>

50 GOTO 10

The GOTO statement is used just to transfer control of program execution to the line

Page 22 http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

number following the GOTO statement.

ON GOSUB <line number> ON <expression> GOSUB <line number> [,<line num-

200 ON X+1 GOsuB 10, 90, 300, 550

The ON - GOSUB statement provides afacility to allow BASIC11 to decide which of
anumber of subroutines to execute based on the value of an expression. When the expression
is evaluated, the resulting number is used to pick one of the line numbers following the
GOSUB it should execute. In the above example if X were equal to 0, the expression would
evaluate to 1 and the subroutine starting at line 10 would be executed. If X were equal to 1,
then the subroutine at line 90 would be executed and so on. If the expression evaluatesto 0, a
negative number or a number that is greater than the number of lines listed after the GOSUB,
Error #32 (“ON” argument is Negative, Zero, or Too Large) will be issued.

ON GOTO <line number> ON <expression> GOTO <line number> [,<line num-
ber>,....<line number>]

500 ON X GOTO 100, 200, 300, 400, 500

The ON - GOTO statement works in basically the same manner as the ON - GOSUB
except that control is transferred directly to the line number that is selected from the list fol-
lowing the GOTO. No return address is saved and hence control cannot be returned to the
statement following the ON - GOTO statement.

3.3 Conditional Tests:
IF THEN  <linenumber> IF <expression> THEN <line number>

55 I F A=1 THEN 200
70 | F A=1. AND. B=1 THEN 500

The IF - THEN statement is used to transfer control of the program to another state-
ment based on the results of the evaluation of the expression. If the expression is true (evalu-
ates to any non-zero value) then control is transferred to the statement at the line number
following THEN. If the expression evaluates as false (equal to zero) then the next sequential
statement in the program will be executed. Notice in the second example that multiple condi-
tions may easily be tested in asingle IF statement by use of the logical operators.

http://www.micronator.com Page 23



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

IF THEN ELSE
IF <expression> THEN <line number> EL SE <line number>
75 | F PORTA=$FE THEN 200 ELSE 300

This form of the IF - THEN statement is a slight variation in that if the expression is
evaluated as false control of the program istransferred to the line number following the EL SE
clause.

TNOTE: In the above examples a space follows the expression in the IF statement.
ThisISREQUIRED so that BASIC11 will know where the expression ends. Failure to follow
the expression with a space will result in an Error being reported, most likely Error #6 (111egal
Operator).

3.4 Input/Output:

INPUT <line number> |INPUT [“string constant”,] <variable> [,<vari-
able>,....<variable>]

45 | NPUT “ENTER THREE NUMBERS’, A, B, C
55 | NPUT XE, ZE, PI

The input statement is one of the ways that a value may be assigned to a variable.
When the INPUT statement is executed, the prompt string, if present, will be printed on the
terminal followed by a question mark and will wait for the user to enter the requested data. If
the user enters less data than is requested, BASIC11 will respond by printing a question mark
on the next line and will wait for the next piece of data to be entered. This will continue until
all requested data has been entered by the user. If more data is entered by the user than was
requested by the INPUT statement, the excess will be ignored.

TNOTE that if the user responds to an INPUT statement with a “Alternate-C”, pro-
gram execution will be halted and BASIC11 will return to the command mode. The program
cannot be restarted by the use of the CONT command.

PRINT <linenumber> PRINT [variable, expression, “string constant” ]

10 PRINT “THE VALUE OF X IS *; X
20 PRINT X, X*X, X/ Z+3

30 PRINT X, Y, Z

35 PRINT A, B, G

65 PRI NT

Page 24 http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

The PRINT statement may be optionally followed by any combination of variables,
expressions, or string constants each separated by either a comma or semicolon. The signifi-
cance of separating the items in a PRINT statement by either a comma or a semicolon is
explained below.

BASIC11 divides each output lineinto “fields’ of eight (8) characters. When the argu-
ments following a PRINT statement are separated by commas, BASIC11 will print each item
beginning at the next field in the line. In line 30 in the above example, BASIC11 would print
the value of variable X beginning in column O, the value of variable Y would be printed start-
ing in column 8 and the value of variable Z would be printed starting in column 16.

Separating variables with semicolons effectively disables this “fielding” feature by
printing variables and constants next to one another. There will still be a space or two between
successive numerical expressions that are printed because each number is printed with one
trailing space. Also if a number is not negative a space will be printed in front of the number
in place of the minus sign.

Notice in line number 35 above that a semicolon (it could have been acomma) follows
the last variable. This has the effect of suppressing the normal carriage return/line feed
sequence that would normally be issued after printing the last expression.

As mentioned in the first paragraph, the argument list that follows the PRINT state-
ment is optional asisillustrated in the example of line 65 above. This form of the print state-
ment has the effect of printing only ablank line.

? <linenumber> ? [variable, expression, “string constant” ]

The question mark can be entered instead of the keyword “PRINT” to save typing time
when entering a program or executing a line in the immediate mode. When entered in a pro-
gram line the question mark is replaced by the same token as the keyword PRINT. Because of
this, when the program line is listed the keyword PRINT will appear instead of the question
mark.

INBYTE <linenumber> INBYTE <variable>

10 | NBYTE DC
20 | NBYTE AX(Z)
30 | NBYTE CV

The INBY TE statement is another way that a value may be assigned to avariable. The
INBY TE statement is similar to the input statement except that instead of expecting an ASCI|

http://www.micronator.com Page 25



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

formatted number from the terminal device, it assigns the value of an ASCII byte to the vari-
ablethat followsit. If the statement in line 10 were executed and the character “Y” were typed
at the terminal, the variable DC would contain the decimal value 89 which is the numerical
value of the ASCII character “Y”.

3.5 Looping Constructs:
FOR <variable>=<expression> TO <expression> [ST EP<expression>]

85 FOR X=1 TO 1000
90 FOR X=A TO B+C STEP 10
95 FOR X=100 TO 0 STEP -1

The FOR - NEXT statements are what is known as a deterministic looping construct
because the number of times the loop will be executed is determined at the start of the loop
when the FOR statement is executed. When a FOR statement is executed all instructions
between it and the matching NEXT will repeatedly execute until one of two conditions is met.
Each pass through the loop the STEP value is added to the value of the control variable. If the
STEP value is positive, the loop will be executed again if the control variable is less than or
equal to the value of the expression following TO. If the step value is negative the loop will be
executed again if the control variable is greater than or equal to the value of the expression
following the TO.

TNOTE: If no STEP value is supplied (it's optional) that a value of one (+1) is
assumed.

TNOTE: All of the expressions in the FOR statement are evaluated only once at the
start of the loop. This means that the terminating value and the step value may not be changed
in the body of the loop, however; since the control variable is the same as any other variable,
its value may be changed within the body of the loop. This would allow for exiting the loop
before it normally would.

TNOTE: The test of the control variable against the terminating value is actually per-
formed when the NEXT statement is executed, so the code between FOR and NEXT will be
executed at least once.

FOR - NEXT statements may be nested but they must each use their own separate con-
trol variable. Currently the maximum number of nested FOR - NEXT loopsiseight (8). Loops
may be exited early by use of GOTO's however thisis not good programming practice and is
not recommended.

TNOTE: In the above examples a space follows each of the expressions in the FOR
statement. This IS REQUIRED so that BASIC11 will know where the expression ends. Fail-

Page 26 http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

ure to follow each expression with a space will result in an Error being reported, most likely
Error #6 (Illegal Operator).

NEXT <line number> NEXT <variable>
100 NEXT X

The NEXT statement is used in programs to complete a FOR loop. The variable speci-
fied in the NEXT statement must be the same as the control in the matching FOR. If it is not,
Error #36 (Mismatched “FOR - NEXT” loop) will be issued and program execution will stop.
As mentioned above, the test to see whether the loop should be terminated or not is actually
performed when the NEXT statement is executed.

WHILE <line number>WHILE <expression>
500 WHI LE X<=10000

The WHILE - ENDWH statements are considered to be a non-deterministic type of
looping construct because the number of times the loop will execute is not determined at the
start of the loop. In fact since the expression following the WHILE statement is evaluated at
the start of the loop, the loop may never be executed if the expression is false (evaluates to
zero) upon entry of the loop. There is one important point that needs to be made about the
WHILE looping construct. The statements within the loop must contain a statement that
changes the value of the test expression following WHILE so that the expression eventually
becomes fal se otherwise the loop will never terminate and the statements bounded by WHILE
and ENDWH will execute forever!

The WHILE statement may be used as part of a multiple statement line, however; in
order to provide improved program readability and to show the structure of the program this
practice is discouraged.

WHILE - ENDWH loops may be nested up to eight (8) levels deep. WHILE loops
may be exited early by use of GOTO's however thisis not good programming practice and is
not recommended.

ENDWH <line number> ENDWH
600 ENDWH

The ENDWH statement is used only in conjunction with a matching WHILE state-
ment to enclose a group of lines within aloop. The effect of the ENDWH statement isto eval-

http://www.micronator.com Page 27



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

uate the expression following WHILE to determine whether the loop should be executed
again.

TNOTE The ENDWH statement may be part of a multi-statement line however, it
must be the first statement on the line.

3.6  Program Termination:
STOP <line number> STOP
1000 STOP

The STOP statement is essentially a software break “Alternate-C” instruction. When
the STOP statement is executed, program execution is temporarily suspended and the mes-

sage:
STOPPED AT LINE # <line nunber>

Is printed on the terminal. In the above example <line number> would be 1000. If no
alterations are made to the program after it has been suspended, execution may be restarted
with the CONT command. The first statement executed will be the one immediately following
the STOP statement.

END <line number> END
300 END

The END statement is used to terminate program execution. It does not have to be the
last statement and may appear anywhere in the program. In fact an end statement need not
appear anywhere in the program. If BASIC11 tries to execute past the end of the program, an
END statement will automatically be executed. Unlike the STOP statement, after an END
statement has been executed the program may not be restarted viathe CONT command.

3.7 Real Time Event Statements:
In any control environment, events usually occur asynchronously with respect to main
program execution. To cope with thiskind of environment the MC68HC11 was designed with

an extensive interrupt structure to support all of its on chip subsystems. The following state-
ments all provide control of interrupt driven events directly from BASIC11.

Page 28 http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

ONTIME <line number> ONTIME <expression>,<line number>

25 ONTI ME 120, 500
35 ONTI ME HR+1, 200
95 ONTI ME 0, 500

In many control situationsit is necessary to take periodic measurements or record cer-
tain events at fixed time intervals. The ONTIME statement frees the main program from hav-
ing to continuously check the value of the system variable TIME in order to determine when
to take a measurement or record an event. The ONTIME statement allows program control to
be transferred directly to an interrupt handling routine beginning at <line number> when the
value of <expression> matches the value of the system variable TIME. The value of <expres-
sion> may evaluate to any legal integer, however; if <expression> evaluatesto zero (0) it has
the effect of disabling the ONTIME function.

One of two methods may be used to generate periodic interrupts using the ONTIME
statement. The first method involves zeroing the system variable TIME in the interrupt han-
dling routine with the statement TIME=0. This method may be used if continuous timekeep-
ing is not required by the system. The second method involves executing the ONTIME
statement in the interrupt routine, adding the desired time interval (in seconds) to the current
value of the system variable TIME. This second method should be used if continuous time-
keeping is required by the system. The following examples should clarify things.

First Method:

10 TI ME=0
20 ONTI ME 10, 100

100 TI ME=0

150 RETI
The above example will produce atimer interrupt every 10 seconds.
Second Method:

10 TIME =0
20 ONTI ME 20, 500

http://www.micronator.com Page 29



MicroNator UNIVERSAL DEVELOPMENT SYSTEM
500 ONTI ME Tl ME+20, 500

550 RETI
The above example will produce atimer interrupt every 20 seconds.

ONIRQ <linenumber> ONIRQ <expression>,<line number>

10 ONIRQ 1, 355
25 ONI RQ MD, 225

The ONIRQ statement allows BASIC11 to directly handle interrupts that are gener-
ated by an active transition on the MC68HC11's IRQ pin. The <expression> following the
ONIRQ keyword is used to select the mode of the statement. If the expression evaluatesto any
non-zero integer, the servicing of the IRQ interrupt by BASIC11 is enabled. If the expression
evaluates to zero (0), IRQ interrupts are effectively disabled. The <line number> following
the expression may be any legal BASIC11 line number.

ONPACC  <linenumber> ONPACC <expression>,<expression>,<line number>

105 ONPACC 1, 0, 1000
255 ONPACC A, B, 3000

The ONPACC statement allows the programmer to handle events associated with the
MC68HC11's Pulse Accumulator on an interrupt basis. The first expression following the
ONPACC keyword is used to set the operating mode of the pulse accumulator. The expression
must evaluate to a number from 0 through 4. The operating modes of the pulse accumulator
are described in the table below.

Mbde Action On d ock

Di sabl es the Pul se Accunul at or

Fal | i ng Edge on PA7 Increnents the Counter

Ri si ng Edge on PA7 Increnents the counter

A“0” on PA7 | nhi bits E/ 64 froml ncrenenti ng Count er

A “1" on PA7 Inhibits E/64 fromlncrementing Counter

A WNEFLO

The second expression is used to determine which of two events will cause an inter-
rupt to be generated by the pulse accumulator. If the expression evaluates to zero (0) then an
interrupt will be generated each time an active edge is detected on PA7 as described in the

Page 30 http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

table above. If it evaluatesto 1, the pulse accumulator will generate an interrupt only when it
overflows from $FF to $00. The <line number> tells BASIC11 where the interrupt routine
begins when a Pulse Accumulator interrupt occurs.

For more information on the Pulse Accumulator subsystem, please refer to the
MC68HC11's data sheet.

RETI <linenumber> RETI
485 RETI

All BASIC11 interrupt service routines must end with this statement. Failure to end an
interrupt routine with RET! will result in al successive interrupts being masked! This will
effectively stop the system TIME function.

SLEEP <linenumber> SLEEP
700 SLEEP

The SLEEP statement allows the MC68HC11 to be put into the 'Stop Mode' which is
its lowest power consumption mode. In the “Stop Mode”, al clocks, including the internal
oscillator, are stopped and all internal processing is halted. Recovery from the SLEEP state-
ment may be accomplished by either a processor RESET or a XIRQ interrupt. When an XIRQ
interrupt is used, BASIC11 will continue execution with the next BASIC program statement.
When a hardware RESET is used to exit the sleep mode, the action taken by BASIC11 will
depend on a couple of factors. If the “Auto Start” flag has been set with the AUTOST com-
mand, the BASIC program stored in external EEPROM/EPROM will automatically be exe-
cuted. If the “Auto Start” flag has not been set, BASIC11 will return to the command mode.

3.8 Miscellaneous Statements:
DIM <linenumber> DIM <subscripted variable> [,subscripted variable...]

10 DI M AX(100), DX(9), LK( 1000)
20 DI M Z( A+5), D( X)
30 DI M X(0)

The DIM statement, which was discussed briefly in section 1.4 on page 9, is used to
allocate storage for subscripted variables when a program is run. As can be seen from the
examplein line 20 above, the expression in parenthesis does not have to be a constant. Thisis
because array storage is dynamically allocated at runtime. This feature is especially nice in

http://www.micronator.com Page 31



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

control applications where memory is usually at a premium because large arrays don't have to
be dimensioned in advance to fit the worse case. All subscripted variables must appear in a
DIM statement before they may be used in an expression. Failure to do thiswill result in Error
# 24 (Undimensioned Array) being issued when the variable is referenced.

The storage required by subscripted integer variablesis:
2* (<expression>+1)+2  bytes

Remember that all subscripts start at zero. In the examplein line 10 above, the variable
AX(100) would actually create 101 integer variables, AX(0) through AX(100). Although it
may seem strange the examplein line 30 islegal. Thiswill create a single integer subscripted
variable X(0).

POKE <line number> POKE(<expression>,<expression>)

45 POKE( $6000, $5A)
55 POKE( AD, X* 5)

The POKE statement allows the BASIC11 program to directly modify RAM mem-
ory or 1/O locations not the external EEPROM. The first expression within the parenthesisis
the address at which the second expression will be stored. The first expression may evaluate to
any legal integer number ($0000-$7FFF). However the second expression must be in the
range 0 <= expression <= 255 since a byte location is being written to. If the second expres-
sion is outside the above range, Error #48 (Illegal Device Number). Care should be taken
when using this statement so that part of the BASIC11 program or its data are not overwritten

especially $0000-$00FF and $7CB1-$7FFF of the RAM asit is used by BASIC11 to store
variables, stack area, and special routines.

TNOTE If POKE isused to write in the range $7CB1-$FFFF MicroNator will become
unstable. It might be necessary to re-download BASIC11 again.

REM <linenumber> REM [any text]
10 REM THIS I S A REMARK STATEMENT
The REM statement is used to insert comments about the operation or structure of a
program. Any text following the REM statement isignored, so if it appearsin amultiple state-

ment line, it should be the last statement on the line. If control is passed to a REM statement
by a GOTO GOSUB, etc., control isjust passed to the line following the REM statement.

Page 32 http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

TRON <linenumber> TRON
20 TRON
The TRON statement is used to turn the trace mode on. The trace mode, when turned
on, will print line numbers in brackets as each line is executed. This can be used as an aid in
debugging programs.
TROFF <linenumber> TROFF

100 TROFF

The TROFF statement is used to turn the trace mode off.

http://www.micronator.com Page 33



Page 34

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

CHAPTER 4

BUILT IN FUNCTIONS OF BASIC11

BASIC11 has a number of built in functions that are used to perform common opera-
tions on numerical quantities, perform specia calculations, call user written assembly lan-
guage subroutines, and access some of the special hardware features of the MC68HCL11.

4.1 Mathematical Functions:
ABS(X)

The ABS function will return the ABSolute value of the expression in parenthesis. The
function will always return a positive number as its result.

FDIV(X,Y)

The FDIV function is used to perform an unsigned fractiona divide using the
MC68HC11's FDIV instruction. This function allows BASIC11 to resolve fractional parts of
the remainder of an integer divide without using floating point math. The result is a binary
weighted decimal number. Some examples may clarify what the function does.

3/4=.75decimal 3/4=3$C000 binary weighted decimal
2/4=.50decimal 2/4=3%$8000 binary weighted decimal
1/4=.25decima 1/4=3%4000 binary weighted decimal
.99999... = $FFFF

For the function to execute properly X must be lessthan Y and Y may not be equal to
zero. If either condition exists Error #44 (Overflow or Divide by Zero in “FDIV()” Function)
will be issued and program execution will terminate.

RND(X)

The RND function will return a pseudo random number between 0 and 32767 inclu-
sive. The value of the argument X has the following effect on the function:

For X <0 anew series of random numbers will be started by reading the current value
of the timer/counter and using it as the new seed value.

http://www.micronator.com Page 35



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

For X = 0 anew random number will be returned each time the function is called.

For X > 0 the last random number that was generated is returned.

TNOTE that the function only generates pseudo random numbers and that a particular
serieswill repeat every 65536 calls of the function.

SGN(X)

The SGN function will return aplus one (1) if the argument is positive, zero (0) if the
argument is zero, and aminus one (-1) if the argument is negative.
4.2 Print Functions:

CHR$(X)

The CHRS$ function will return a single character string whose ASCII vaue is the
argument X. This function is very useful for sending non-printable ASCII characters to an
output device. The value of the argument X must be in the range 0 <= X <= 255 or Error #43
(Argument < 0 or > 255 in “CHR$()” Function) will be issued. This function may only be
used in the PRINT statement.

HEX(X)

The HEX function is used to convert a binary number to a four digit hexadecimal
string. This function is very useful when printing the contents of memory locations or 1/0
ports. This function may only be used in the PRINT statement.

HEX2(X)

The HEX2 function performs a similar operation to the HEX function except that it is

used to convert a number in the range 0 <= X <= 255 to atwo digit hexadecimal string. If a

number outside the specified range is passed as an argument to the HEX 2 function, Error #50
(Argument < 0 or > 255 in “HEX2()” Function) will be reported.

TAB(X)

Page 36 http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

The TAB function will move the cursor to column X on the output device. If the out-
put device is already past column X then no action is performed. The argument to the TAB
function must be in the range 0 <= X <= 255 or Error # 42 (Argument < 0 or > 255in “TAB()”
Function) will be issued. This function may only be used in the PRINT statement.

4.3 Hardware Related Functions:
ADC(X)

The ADC function allows a program to directly access the MC68HC11's on board 8-
bit A-to-D converter. Any one of the eight channels may be read by calling the function with
the proper argument. If the argument is not in the proper range (between 0 and 7) Error #45
(Invalid Channel Number in “ADC()” Function) will be issued. The A-to-D converter is oper-
ated in the single channel mode and is converted four times. These four conversions are then
averaged by BASIC11 and the result isthen returned. Since the A-to-D conversion timeisfast
(26usat 1.2290 MHz or 16usat 2.0 MHZz) thistends to help average out any noise in the read-

ing.

CALL(X)

Even though BASIC11 is extremely fast for an interpreted BASIC, there are still some
things that may need to be controlled that it can't keep up with. The CALL function allows
machine language subroutines to be called directly from BASIC11. The CALL function must
appear in an expression since it will return a 16-bit number as a result of the function call.
Some examples follow:

10 F=CALL( $EAFO)
20 Z=CALL( AX*2)
30 PRI NT CALL($100)

The users machine language program must only preserve the Y-index register, the
stack pointer, and the current state of the stack. All other registers may be destroyed. The
user’s subroutine is entered via a JSR (Jump to SubRoutine) instruction, therefore it must end
with the execution of an RTS (ReTurn from Subroutine) instruction. Generally the user’ s sub-
routine should have about 100 bytes of stack space available. If more than this is needed, the
subroutine will have to allocate its own stack storage space.

Thisis where MicroNator comes in action. MicroNator with the help of “Alternate-L”
is able to download from the PC any assembler program in the S0-S9 format anywhere into
the external EEPROM or external RAM. Refer to MicroNator user manual for the “ Alternate-
L” function.

http://www.micronator.com Page 37



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

TNOTE: The “Alternate-L” function issues a RESET after the download so use it
before entering your BASIC11 program in RAM because RESET erases all the RAM area.

TNOTE: Make sure you don't erase part of the BASIC11 program.

TNOTE: $D000-$DDFF is reserved for the user to place his routines.

EEP(X)

As mentioned in section earlier the EEP statement allows a BASIC11 program to
directly write a “WORD” of information to the MC68HC11's external EEPROM when the
EEP statement appears to the left of the equal as a basic “ statement”. When EEP appears on
the right side of the equals it will act like a function and will return the “BYTE” value cur-
rently stored in the location specified. It isidentical to the PEEK(X).

Although X can be any location from $0000 to $DDFF, it is recommended to use it in
the range $00-$FF.

PEEK (X)

The PEEK function performs the opposite action of the POKE function. It allows
BASIC11 to directly retrieve the contents of any memory or 1/0O location in the MC68HC11's
memory map. The argument X, sinceit is an address, is taken to be an unsigned number so X
may take on any integer value. A single byteisreturned by the function so its value will be >=
0 and <= 255.

PORTA
PORTB
PORTC
PORTD
PORTE

The PORTXx functions are different from the other functionsin that they do not require
an argument. Essentially these functions act as special variables that alow direct reading of
the MC68HC11's 1/0O ports from BASIC.

PORTC and PORTD are general purpose I/O ports and as such may have each pin of
the port programmed as either an input or an output. Each ports Data Direction Register
(DDR) is used to specify the primary direction of data on the 1/O pin. If the corresponding port
pins DDR bit is set to a one (1) the port pin will be configured as an output. If the DDR bit is

Page 38 http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

cleared to a zero (0) the port pin will be configured as an input and will become high imped-
ance. When a bit which is configured for output is read, the value returned is the value at the
input to the pin driver. If awrite is executed to a pin that is configured as an input, the value
will be stored in an internal latch so that if the pin islater configured as an output, the latched
value will then appear on the output

PORTA, PORTB, and PORTE are al fixed direction Ports with the exception of bit-7
of Port A. When PORTB is being used for general purpose outputs, it is configured for output
only and reads return the actual level sensed at the input of the pin drivers. When PORTA is
being used for general purpose 1/0, bits 0,1, and 2 are configured as inputs and writes to these
bits have no effect or meaning. Bits 3, 4, 5, and 6 are configured for output only and reads
return the actual level sensed at the input of the pin drivers. Bit 7 of PORTA can be configured
as either an input or an output via the DDRA7 bit in the PORTA control register (PACTL).
PORTE contains the eight inputs to the A-to-D converter, however they may also be used as
digital inputs. Writes to the PORTE address have no meaning or effect.

For amore compl ete discussion of the function of the I/O subsystems contained in the
MC68HC11, it is suggested that the parts data sheet be consulted.

TNOTE: Please take notice that PORTB and PORTC are taken by data and address in
MicroNator multiplex mode. Port PD2..PD5 are used for the SPI communication but can be
used for other purposes.

TIME

Like the PORTx functions, the TIME function requires no arguments and is used to

retrieve the current value of the system time.
PACC
When the keyword PACC appears to the right of the equals sign it allows the program

to retrieve the current value of the Pulse Accumulator. Effectively PACC is a function that
requires no arguments.

http://www.micronator.com Page 39



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 40 http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

CHAPTER 5

ERROR REPORTING OF BASIC11

BASIC11 has an extensive error reporting structure that reports two basic types of
errors. Thefirst category iscommand line errors. If amistake is made by either typing aniille-
gal command or a syntax error is detected either in a program line or a statement that is to be
executed in the direct mode, BASIC11 will print the contents of the input buffer. On the next
line asterisks and arrows will be printed showing the approximate location of the error within
the line. Finally, a number is printed telling the operator what is wrong with the line. In the
example shown below programmer input is underlined.

#10 FOR X=1 100 STEP 2
10 FOR X=1 100 STEP 2

RR R R Ik I I I I IV AWAWAN

ERROR #17

READY

#

Looking up error #17 in the error table we find that we have inadvertently left out the
“TO” in the FOR statement. By retyping the line with “TO” between the 1 and 100 BASIC11
will accept the line.

When the programmer mistypes a command, Error number 3 (Invalid Expression) will
generaly beissued. An example follows.

#LOST (what the progranmer meant to type was LI ST)
LOST

* NN\N
ERROR #3
READY

#

The reason error number 3 isissued isthat BASIC11 first searches its command table
to see if the programmer has typed a command. If no match isfound, BASIC11 then searches
its statement table to try to match the input buffer with one of the keywords. If no match is
found, BASIC11 assumes that the statement isan implied LET. In the above example the first

http://www.micronator.com Page 41



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

two letters, “LO”, would be assumed to be a variable name, and the rules say that in an
implied (or declared) LET the assignment variable must be immediately followed by an
equals (“=").

The second category of errors is runtime errors. These errors, which are context
dependent, occur while the program is running. All runtime errors are considered to be fatal in
BASIC11 and will immediately terminate program execution. A message will be printed on
the terminal indicating what error occurred and in which line it occurred. Even though
BASIC11 does not list the source line for runtime errors, the error number is specific enough
that the problem can easily be identified.

A list of error numbers and their meanings follows.
Error # Meaning

Line number < 0 or > 32767

Syntax Error

Invalid Expression

Unbalanced Parenthesis

Data Type Mismatch

Illegal Operator

[llegal Variable

[llegal Token

Out of Memory

Integer Overflow

Invalid Hex Digit

Hex Number Overflow

Missing Quote

Missing Open or Closing Parenthesis
Syntax Error in “ON” Statement
Missing “THEN” inan “IF’ Statement
Missing “TO” ina“FOR” Statement
Line Number Zero (0) Not Allowed
[llegal Data Type

Expression Too Complex

©OCoo~NOoOULhWDNEF

NP RRPRRRERRRR R
QOWWOWNOUINWNRO

21 Missing Comma

22 Missing Commaor Semicolon

23 Math Stack Overflow

24 Undimensioned Array

25 Subscript Out of Range

26 Divide By Zero

27 Line Number Not Found

28 Too Many Nested “GOSUB's’ (maximum is eight)
29 “RETURN” without “GOSUB”

Page 42 http://www.micronator.com



30
31
32
33
34
35
36
37
38
39
40
41
42

45
46
47
48
49
50
51
52
53

55
56

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Too Many Active “WHILE'S” (maximum is eight)
“ENDWH?” without “WHILE"

“ON” argument is Negative, Zero, or Too Large
Non-subscriptable Variable Found in “DIM” statement
Variable has Already Been DIMensioned

Too Many Active “FOR - NEXT” loops (maximum is eight)
Mismatched “FOR - NEXT” loop

Can't Continue

Out of Datain “READ” or “RESTORE” Statement
Negative Subscripts Not Allowed

“EEP()” Subscript Negative or > 255

Function Only Allowed in “PRINT” Statement
Argument <0 or > 255in “TAB()” Function
Argument < 0 or > 255 in “CHR$()” Function
Overflow or Divide by Zeroin “FDIV()” Function
Invalid Channel Number in“ADC()” Function
Tried to Assign aValue of < 0 or > 255 to a PORT
[llega PORT

[llegal Device Number

Uninitalized 1/0 Vector

Argument < 0 or > 255 in “HEX2()” Function
Statement not alowed in immediate mode

RETI executed when not in an interrupt routine
Tried to assign avalue of <0 or >255 to PACC
Interrupt or Count mode error in ONPACC
Program storage EEPROM istoo small

EEPROM range not legal to be written by user

http://www.micronator.com

Page 43



Page 44

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

APPENDIX A

Interrupt Vector Table:

All twenty of the interrupt vectors for the different subsystems on the MC68HC11 are
located in the memory map at |ocations $FFD6 through $FFFF. To provide for more flexibil-
ity in using the subsystems in an interrupt driven mode, the EEPROM hardware vectors
“point” to a second “JUMP” vector table located in RAM on page zero. The table, as shown
below, may be altered by the programmer to point to special interrupt handlers for a particular
application. The PACCIE, PACCOVF, TOC1, and IRQI vectors are initialized by BASIC11
to point to its own interrupt routines for the various real time control functions provided by
BASIC11. The ILLOP, COP, and CMF vectors are initialized to jump to the start of
BASIC11. All the rest of the vectors point to an RTI instruction.

TABLE: 1 “JUMP” VECTOR TABLE LOCATED IN RAM ON PAGE ZERO

0439 009e ORG $009E

0440 *

0441 009e CONSTAT RMB 3 GET CONSOLE STATUS FOR BREAK ROUTI NE.
0442 00al I NCONNE RMB 3 GET BYTE DI RECTLY FROM CONSOLE FOR BREAK RTN.
0443 *

0444 00a4 ORG $00A4

0445 *

0446 00a4 I NTABLE RMB 16 RESERVE SPACE FOR 8 DI FFERENT | NPUT ROUTI NES.
0447 00b4 OUTABLE RMB 16 RESERVE SPACE FOR 8 DI FFERENT OUTPUT ROUTI NES.
0448 *

0449 *

0450 *

0451 *

0452 00c4 ORG $00C4 START OF RAM | NTERRUPT VECTORS.

0453 *

0454 00c4 RAMWVECTS EQU *

0455 00c4 SCl SS RVB 3 SCl SERI AL SYSTEM

0456 00c7 SPI TC RVB 3 SPI  TRANSFER COVPLETE.

0457 00ca PACCI E RVB 3 PULSE ACCUMULATOR | NPUT EDGE.

0458 00cd PACCOVF RMB 3 PULSE ACCUMULATOR OVERFLOW

0459 00dO TI MEROVF RMB 3 TI MER OVERFLOW

0460 00d3 TOCS RVB 3 TI MER QUTPUT COVPARE 5.

0461 00d6 TOCA RVB 3 TI MER OQUTPUT COVPARE 4.

0462 00d9 TOC3 RVB 3 TI MER OQUTPUT COVPARE 3.

0463 00dc TOC2 RVB 3 TI MER QUTPUT COVPARE 2.

0464 oodf TCC1 RVB 3 TI MER OQUTPUT COVPARE 1.

0465 00e2 TIC3 RVB 3 TI MER | NPUT CAPTURE 3.

0466 00e5 TI C2 RVB 3 TI MER | NPUT CAPTURE 2.

0467 00e8 TIC1 RVB 3 TI MER | NPUT CAPTURE 1.

0468 00eb REALTIM RMB 3 REAL TI ME | NTERRUPT.

0469 00ee I RQl RVB 3 I RQ | NTERRUPT.

0470 oof1 XIRQ RVB 3 XI'RQ | NTERRUPT.

0471 oof 4 SW | RVB 3 SOFTWARE | NTERRUPT.

0472 00f7 I LLOP RVB 3 | LLEGAL OPCCDE TRAP.

0473 00fa cor RVB 3 WATCH DOG TI MER FAI L.

0474 oofd CVF RVB 3 CLOCK MONI TOR FAI L.

http://www.micronator.com Page 45



7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

TABLE: 2 BASIC11 EEPROM HARDWARE INTERRUPT VECTOR

ffdé
ffd6
ffd8
ffda
ffdc
ffde
ffel
ffe2
ffed
ffe6
ffe8
ffea
ffec
ffee
fffo
fff2
fffa
fffé
fff8
fffa
fffc
fffe

Page 46

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
ec

c4
c7
ca
cd
do
d3
dé
do
dc
df

e2
e5
e8
eb
ee
f1
fa
f7
fa
fd
50

ORG
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB

$FFD6
scl ss
SPI TC
PACCI E
PACCOVF
TI MEROVF
TOCS
TOCA
TOC3
TOC2
TOCL
TIC3
TIC2
TICcL
REALTI M
| RQI

Xl RQ
SWI

| LLOP
coP

CMF
POAERUP

START OF VECTOR TABLE
SCI SERI AL SYSTEM

SPI  TRANSFER COVPLETE
PULSE ACCUMULATOR | NPUT EDGE
PULSE ACCUMULATOR OVERFLOW
TI MER OVERFLOW

TI MER OQUTPUT COVPARE 5
TI MER QUTPUT COVPARE 4
TI MER QUTPUT COMPARE 3
TI MER OQUTPUT COVPARE 2
TI MER QUTPUT COVPARE 1
TI MER | NPUT CAPTURE 3
TI MER | NPUT CAPTURE 2
TI MER | NPUT CAPTURE 1
REAL TI ME | NTERRUPT

I RQ | NTERRUPT

XI'RQ | NTERRUPT
SOFTWARE | NTERRUPT

| LLEGAL OPCODE TRAP
WATCH DOG FAI L

CLOCK MONI TOR FAI L
RESET

http://www.micronator.com



0000

0000
0002

0004
0006
0008
000a
000c

000e
0010

0012
0014
0016

0018
0019
001a
00la
001a
001b
001c
001d
001e
001f

0021
0023
0025
0027
0029
002b
002d
002f

0031
0033
0035
0037
0038
003a

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

*
*

*

| BUFPTR
TBUFPTR

*

APPENDIX B

TABLE: 3 “BASIC11” Memory Map

[ *xxxxxkxxxx defjne vari abl @s *xxxxkkxkxxk |

ORG

RVB
RVB

$0000

char

2 /* input buffer pointer */
2 /* token buffer pointer */

* the next 5 variables must remain grouped together

*

BASBEG
BASEND
VARBEG N
VAREND
HI LI NE

*
*

*

BASMEND
VARVEND

*
*

*

FI RSTLI N
LASTLI N
I NTPTR

*
*

*

ERRCCDE
I MM D
BREAKCNT
COUNT

| FWHFLAG
TRFLAG
CONTFLAG
RUNFLAG
PRI NTPOS
NUMSTACK
OPSTACK
FORSTACK
WHSTACK
GOSTACK
CURLI NE
ADRNXLI N
STRASTG
FENCE

| PSAVE
DATAPTR
RANDOM
DEVNUM
TI MEREG
TI MECVP

RVB
RVB
RVB
RVB
RVB

RVB
RVB

RVB
RVB
RVB

RVB
RVB
EQU
EQU
RVB
RVB
RVB
RVB
RVB
RVB
RVB
RVB
RVB
RVB
RVB
RVB
RVB
RVB
RVB
RVB
RVB
RVB
RVB
RVB

2 /* start of basic program area */

2 /* end of basic program */

2 /* start of variable storage area */

2 /* end of variable storage area */

2 /* highest |ine number in program buffer */
2 /* physical end of basic program nenory */
2 /* physical end of variable nmenmory */

int

2 /* first line to list */

2 /* last line to list */

2 /* integer pointer */

short

/* error code status byte */
/* imredi ate node flag */
/* al so use for break check count */

/* translating IF flag */
/* trace node flag */
/* continue flag */

/* current print position */

/* numeric operand stack pointer */
/* operator stack pointer */

/* FOR stack pointer */

/* WHI LE stack pointer */

/* GOSUB stack pointer */

/* address of the next line */

/* random nunber/seed */

/* 110 devi ce nunber */

/* TIME register */

/* TIME conpare register */

NNEFEFNMNNNNMNNDNNNNMNNNNNNNRPRRPRRER Y YRR

http://www.micronator.com

/* count used in ESAVE & ELOAD routines */

/* indicates we are in the run node */

/* line # that we are currently interpreting */

/* dynami c string/array pool pointer */
/* varend in case of an error in xlation */
/* interpretive pointer save for “BREAK’ */
/* pointer to data for read statenent */

Page 47



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

003c TI MEPRE RMB 1 /* software prescaler for TIME */
003d ONTI MLI N RVB 2 /* ONTIME |ine number to goto */
003f ONI RQLI N RVB 2 /* ONTRQ line nunmber to goto */
0041 ONPACLI N RVB 2 /* ONPACC |ine nunber to goto */
0043 XONCH RVB 1 /* XON character for printer */
0044 XOFFCH  RMB 1 [ * XOFF character for printer */
0045 SCURLI NE RVB 2 /* to save CURLINE during int. process */
0047 SADRNXLN RVB 2 /* to save ADRNXLIN during int. process */
0049 I NBUFFS RMVB 2 /* ptr to the start of the input buffer */
004b TKNBUFS RMB 2 /* ptr to the start of the token buffer */
004d EOPSTK  RMVB 2 /* end of operator stack */
004f STOPS RVB 2 /* start of operator stack */
0051 ENUMSTK RMB 2 /* end of operand stack */
0053 STNUMS  RMB 2 /* start of operand stack */
0055 EFORSTK RMB 2 /* end of FOR - NEXT stack */
0057 STFORSTK RMB 2 /* start of FOR - NEXT stack */
0059 EWHSTK  RWVB 2 /* end of WHILE stack */
005b STWHSTK  RMB 2 /* start of WHI LE stack */
005d EGOSTK  RMB 2 /* end of GOSUB stack */
005f STGOSTK RMB 2 /* start of GOSUB stack */
0061 | OBaseV RMB 2 /* Address vector for |1/O Registers */
0063 DNANMVE RVB 3 /* to put the var nane when doing a dump */
0066 SUBMAX  RMB 2 [* *
0068 SUBCNT  RMB 2 [* *
006a TOKPTR  RMB 2 /* token pointer (used for list command) */
006¢ Var Si ze RMB 2 /* size of the variable table */
*
* 4+ if *>$9E

*+++++ error “Ran out of Page 0 RAM

*+++++ endif
*

009e ORG $009E
009e CONSTAT RMB 3 GET CONSOLE STATUS FOR BREAK ROUTI NE.
00al | NCONNE  RMB 3 GET BYTE DI RECTLY FROM CON FOR BREAK RTN
00a4 ORG $00A4
*
00a4 I NTABLE RMB 16 RESERVE SPACE FOR 8 | NPUT ROUTI NES.
00b4 OUTABLE RMB 16 RESERVE SPACE FOR 8 OUTPUT ROUTI NES.
*
00c4 ORG $00C4 START OF RAM | NTERRUPT VECTORS.
*
00c4 RAMVECTS EQU *
00c4 SCI SS RVB 3 SCI SERI AL SYSTEM
00c7 SPI TC RVB 3 SPI  TRANSFER COWVPLETE.
00ca PACCIE RMB 3 PULSE ACCUMULATOR | NPUT EDCE.
00cd PACCOVF RMVB 3 PULSE ACCUMULATOR OVERFLOW
00d0 TI MEROVF RVB 3 TI MER OVERFLOW
00d3 TOCS RVB 3 TI MER OQUTPUT COWPARE 5.
00d6 TOCA RVB 3 TI MER QUTPUT COVPARE 4.
00d9 TOC3 RVB 3 TI MER OQUTPUT COWPARE 3.
00dc TOC2 RVB 3 TI MER OQUTPUT COWPARE 2.
00df TOCL RVB 3 TI MER QUTPUT COVPARE 1.
00e2 TIC3 RVB 3 TI MER | NPUT CAPTURE 3.
00e5 TIC2 RVB 3 TI MER | NPUT CAPTURE 2.
00e8 TI C1 RVB 3 TI MER | NPUT CAPTURE 1.
00eb REALTIM RMB 3 REAL TI ME | NTERRUPT.
00ee I RQ RVB 3 I RQ | NTERRUPT.
00f 1 XI'RQ RVB 3 XI'RQ | NTERRUPT.
00f 4 SW | RVB 3 SOFTWARE | NTERRUPT.

Page 48 http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

00f 7 I LLOP RVB 3 | LLEGAL OPCODE TRAP
00f a cor RVB 3 WATCH DOG TI MER FAI L.
oofd CVF RVB 3 CLOCK MONI TOR FAI L.
*
* ottt RAMSt art = $1040
* bbbt RAMVBi ze = $6EBF  (EESTART - RAMBtart - $0100 -1)

*t+++++ PROGRAM = $7CBO (RAMSt art + RAMSi ze - SWSBTKSi ze + 1)
1040 RAMSt ar t EQU $1040 Start of the RAM
7¢cb0 LASTUSER EQU (RAMSt ar t +RAMSI ze- SWSTKSI ze- 1)
* Hi ghest possible byte for user program
* /*********** Ihe [esI QI Ihe Behﬂs [ese[yed IQ[ Bes Q]] ***********/
7cbl LOSTACK EQU ( RAMSt ar t +RAMSI ze- SWBTKSI ze)
* Lowest possible byte for any stack
Teff HI STACK EQU (RAMSBt ar t +RAMSI ze)
* Hi ghest possible byte for any stack
*
* [*FEFFxxxHAEEE The | ast $0100 bytes reserved for BASICl1 special routine *****/
0100 SPECI AL EQU $0100 Speci al routines
7f 00 RAMSAVE EQU (RAMSt ar t +RAMS| ze+1)
7f 03 NEWESAVE EQU RAMSAVE+3
7f 5d NEWDLY EQU RAMSAVE+$5D
7f 68 WKOFFRAM EQU RAMBAVE+$68
7173 RAUTCSTF EQU RAMSAVE+$73
7fff LASTBAS EQU EESTART- 1 Last RAM byte used by BASICl1
*
* /*********** W***********/
*
8000 ORG EESTART Begi nni ng of EEPROM
8000 SBASBEG RVB 2 pointer for start of basic program area
8002 SBASEND RVB 2 pointer for end of basic program
8004 SVARBEG RVB 2 pointer for start of variable storage area
8006 SVAREND RVB 2 pointer for end of variable storage area
8008 SHI LI NE RVB 2 poi nter for highest |ine nunber in program buffer
800a AUTOSTF RVB 1 autostart flag
800b SSTART RVB 1 storage start
*
d0ooo CALLBEG EQU EESTART+$5000 User assenbler call subroutine storage
ddf e MAXEESUB EQU ROMVBEG- 2 maxi num EEP subscri pt
ddf f CALLEND EQU ROMVBEG- 1 End of user assenbler call subroutine storage
de00 ROVBEG EQU $DEOO Begi n of BASICl1
2200 ROVSI ZE EQU $2200
ffdé 00 c4 FDB SCl SS SCl SERI AL SYSTEM
ffd8 00 c7 FDB SPITC SPI  TRANSFER COMPLETE
ffda 00 ca FDB PACCI E PULSE ACCUMULATOR | NPUT EDGE
ffdc 00 cd FDB PACCOVF PULSE ACCUMULATOR OVERFLOW
ffde 00 dO FDB TI MEROVF TI MER OVERFLOW
ffed0 00 d3 FDB TOC5 TI MER QUTPUT COWPARE 5
ffe2 00 d6 FDB TOCA TI MER QUTPUT COVPARE 4
ffe4 00 d9 FDB TOC3 TI MER QUTPUT COWPARE 3
ffe6 00 dc FDB TOC2 TI MER QUTPUT COWPARE 2
ffe8 00 df FDB TCC1 TI MER QUTPUT COWPARE 1
ffea 00 e2 FDB TI C3 TI MER | NPUT CAPTURE 3
ffec 00 e5 FDB TI C2 TI MER | NPUT CAPTURE 2
ffee 00 e8 FDB TIC1 TI MER | NPUT CAPTURE 1
fffo 00 eb FDB REALTI M REAL TI ME | NTERRUPT
fff2 00 ee FDB I RQ I RQ | NTERRUPT

http://www.micronator.com Page 49



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

fff4 00 f1 FDB Xl RQ Xl RQ | NTERRUPT
fffé6 00 f4 FDB SW SOFTWARE | NTERRUPT
fff8 00 f7 FDB I LLOP | LLEGAL OPCODE TRAP
fffa 00 fa FDB corP WATCH DOG FAI L
fffc 00 fd FDB CWF CLOCK MONI TOR FAI L
fffe ec 50 FDB PONERUP RESET
TABLE: 4 “BASIC11” MEMORY MAP
$0000 | gasiCc11 RAM for variabl es
$00FF
0100 i
O1FE G her HCL1 internal RAM
$0200 Reserved 16 bytes )
$0210 Reserved 16 bytes for LCD & KBY expansion board
$0220 Reserved 16 bytes for U O expansion board
EE%%E Reserved 16 bytes for GAL programmer expansi on board
) Spare Chip Select for WVarea
$027F
$0280
| f READ enables (H GH) the RTC chiﬁ sel ect for SP
If WRITEn di sabled (LON the RTC chip select for SP
$02BF
$02C0
Reserved by 16 bytes increnent for future expansion and I/O
$OFFF
$1000 .
HC11 registers
$103F
$1040
Used by BASICll to store USER programin RAM
$7CBO
$7CB1
Used by BASICl1l for Stack area
$7EFF
$7F00 . .
Speci al routine for BASICl1
$7FFF
$8000 Start of EEPROM
$800A The first 10 bytes are used for storage pointers
$800B Used by BASICl1l to store USER programin EEPROM wi th ESAVE
$D000 Free to USER to store assenbler routines
$DDFE MAX EEP() subscri pt )
$DDFF End of user assenbl er routines
$DEOO .
BASI C11 interpreter
$FFD5
$FFD6
Vector table
$FFFF
TABLE: 5 “MicroNator” Reserved Memory
ADDRE DESCRI PTI ON

$0000- $00f f
$0100- $01FF
$0200- $020F
$0210- $021F
$0220- $022F
$0230- $023F

Page 50

Not used by McroNator, free for the user or used by BASICl1
O her HCl11 internal RAM i.e. HCL1EO, HCl11El, HC11ES..
Reserved

LCD & KBY expansi on board

U O (Relays & Opto coupl ers) expansion board

GAL Programmer expansi on board

http://www.micronator.com




MicroNator UNIVERSAL DEVELOPMENT SYSTEM

$0240- $027F
$0280- $02BF

$02C0- $0FFF

SPARE chip select for WV

* Kk ok

* Kk ok

I f Read,
If Witten,
Reserved, by 16 bytes increnent,

enables (H GH) the RTC chip select for SPI
di sables (LOWN the RTC chip select for SPI
for future expansion and I/0O

* ADDR LABEL DEFI NI TI ONS
1000 REGS EQU $1000
0000 PORTA EQU 0 PORT A DATA REGQ STER
0001 RESVD EQU 1 UNUSED
0002 PI OC EQU 2 PARALLEL |/0O CONTROL REGQ STER
* STROBE A FLAG
* 0= | NACTI VE
* 1= SET AT ACTI VE EDGE OF STRA PIN
0080 STAF EQU %10000000
* STROBE A | NTERRUPT ENABLE
* 0= NO HARDWARE | NTERRUPT GENERATED
* 1= HARDWARE | NTERRUPT REQ WHEN STAF=1
0040 STAI EQU %91000000
* PORT C W RE- OR MODE
* 0= PORT C OUTPUTS NORMAL
* 1= OPEN DRAIN
0020 Wom EQU 990100000
* HANDSHAKE/ SI MPLE STROBE MODE SELECT
* 0= SI MPLE STROBE MODE
* 1= FULL HANDSHAKE MODES
0010 HNDS EQU 990010000
* OUTPUT/ | NPUT HANDSHAKE SELECT
* 0= I NPUT
* 1= QUTPUT
0008 aN EQU 90001000
* PULSE MODE SELECT FOR STRB OUTPUT
* 0= STRB LEVEL ACTI VE
* 1= STRB PULSES
0004 PLS EQU 990000100
* ACTI VE EDGE SELECT FOR STRA
* 0= H TO LO (FALLING
* 1= LO TO H (RISING
0002 EGA EQU 990000010
* I NVERT STRB OUTPUT
* 0= STRB ACTI VE LOW
* 1= STRB ACTI VE H GH
0001 I NVB EQU 90000001
*
0003 PORTC EQU 3 PORT C DATA REG STER
0004 PORTB EQU 4 PORTB DATA REG STER
0005 PORTCL EQU 5 PORT C LATCHED DATA REG STER
0006 RESVD1L EQU 6 UNUSED
0007 DDRC EQU 7 DATA DI RECTI ON REG STER FOR PORT C
0008 PORTD EQU 8 PORT D DATA REG STER
0009 DDRD EQU 9 DATA DI RECTI ON REG STER FOR PORT D
000a PORTE EQU $A PORT E DATA REGQ STER
000b CFORC EQU $B TI MER COVPARE FORCE REQ STER
0080 FOC1 EQU 910000000
0040 FOC2 EQU %91000000
0020 FOC3 EQU 990100000

http://www.micronator.com

TABLE: 6 MOTOROLA ASSEMBLER (AS11.EXE) HC11 REGISTERS

Page 51



0010
0008
000c
0080
0040
0020
0010
0008
0ood
0080
0040
0020
0010
0008
000e
0010
0012
0014

0016
0018
001a
001c
00le
0020

0080
0040
0020
0010
0008
0004
0002
0001
0021

0020
0010
0008
0004
0002
0001
0022
0080
0040
0020
0010
0008
0004
0002
0001
0023
0080

FOCA
FOC5
OC1M
ocimr
OC1 M6
OC1MVb
OoC1ma
OC1MB
OC1D
OC1D7
OC1D6
OC1D5
OoC1D4
OC1D3
TCNT
TIC1
TI C2
TIC3

TCLT2

L

EDG1B
EDGLA
ED&2B
EDGA
EDG3B
EDG3A
TVBK1
OC1l
oc2l1
oc3l
o4
OG5l

I C11

1 C21

1 C3I
TFLGL
OC1F

Page 52

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

990010000
990001000
$C
%10000000
991000000
990100000
990010000
990001000
$D
%10000000
991000000
990100000
990010000
990001000
$E

$10

$12

$14

$16
$18
$1A
$1C
$1E
$20

%10000000
%91000000
990100000
990010000
990001000
290000100
90000010
290000001
$21

990100000
990010000
%90001000
290000100
90000010
290000001
$22

%10000000
%91000000
990100000
990010000
%90001000
290000100
90000010
290000001
$23

%10000000

OQUTPUT COMPARE 1 MASK REQ STER

OUTPUT COVPARE 1 DATA REQ STER

TI MER COUNTER REG STER (2 BYTES)
TIMER | NPUT CAPTURE REG STERS (3 REGS, 6 BYTES

TI MER QUTPUT COWPARE REG STERS (5 REGS, 10 BYTES)

TI MER CONTROL REG STER 1

Ow OLx
0 0
0 1
1 0
1 1

ACTI ON UPON SUCCESSFUL COVPARE
TI MER DI SC FROM OQUTPUT PI N
TOGGLE OCx QUTPUT LI NE

CLEAR OCx OUTPUT LI NE TO ZERO
SET OCx OUTPUT LINE TO ONE

TI MER CONTROL REG STER 2
EDGxB EDGxA CONFI GURATI ON

0

0
1
1

= O O

CAPTURE DI SABLED

CAPTURE ON RI SI NG EDGES ONLY

CAPTURE ON FALI NG EDGES ONLY

CAPTURE ON ANY EDGE (RI SI NG OR FALLI NG

MAI'N TI MER | NTERRUPT MASK REG 1

MAI'N TI MER | NTERRUPT FLAG REG 1

http://www.micronator.com



0040
0020
0010
0008
0004
0002
0001
0024
0080
0040
0020

0010

0002
0001
0025
0080
0040
0020
0010
0026

0080

0040

0020

0010

0002

0001

0027

0028

0080
0040

0020

TFL&2
TOF

RTI F
PAOVF
PAI F
PACTL

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU
EQU

EQU

%91000000
990100000
990010000
%90001000
990000100
990000010
90000001
$24

910000000
%91000000
990100000

990010000

990000010
90000001
$25

910000000
%91000000
990100000
990010000
$26

%10000000

991000000

290100000

290010000

990000010

290000001

$27

$28

%10000000
%91000000

990100000

M SC TI MER | NTERRUPT MASK REG 2

TI MER OVERFLOW | NTERRUPT ENABLE

RTI | NTERRUPT ENABLE

PULSE ACCUMULATOR OVERFLOW | NTERRUPT ENABLE
PULSE ACCUMULATOR | NPUT | NTERRUPT ENABLE

0= | NTERRUPT | NHI BI TED

1= | NTERRUPT REQUESTED | F FLAG SET

PR1 PR2 PRESCALE FACTOR

0 0 1
0 1 4
1 0 8
1 1 16

M SC TI MER | NTERRUPT FLAG REG 2

TI MER OVERFLOW FLAG

REAL TI ME (PERI ODI C) | NTERRUPT FLAG
PULSE ACCUMULATOR OVERFLOW FLAG
PULSE ACCUMULATOR | NPUT EDGE FLAG
PULSE ACCUMULATOR CONTROL REG STER
DATA DI RECTI ON FOR PA7

0= I NPUT

1= OUTPUT

PULSE ACCUMULATOR SYSTEM ENABLE
0= DI SABLED
1= ENABLED

PULSE ACCUMULATOR MODE
0= EVENT COUNTER
1= GATED TI ME ACCUMJLATI ON

PULSE ACCUMULATOR EDGE CONTROL
0= FALLI NG EDGES, HI GH LEVEL ENABLES ACCUM
1= RI SI NG EDGES, LOW LEVEL ENABLES ACCUM

RTI | NTERRUPT RATE
RTR1 RTRO DIV E BY

0 0 2713
0 1 2714
1 0 2715
1 1 2716

PULSE ACCUMULATOR COUNT REGQ STER
SPI CONTROL REG STER

SPI | NTERRUPT ENABLE

SPI SYSTEM ENABLE

PORT D W RE- OR MODE

0=PORT D QUTPUTS NORNAL

1=0PEN DRAI N

MASTER/ SLAVE MODE SELECT

http://www.micronator.com

Page 53



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

* 0=SLAVE MODE
* 1=MASTER MODE
0010 M5TR EQU 990010000

0008 CPCL EQU 990001000 CLOCK POLARI TY
0004 CPHA EQU 990000100 CLOCK PHASE

* SPI CLOCK (SCK) RATE BIT
* SPRL SPRO E DIV BY

* 0 o0 2

* 0 1 4

* 1 0 16

* 1 1 32

0002 SPR1 EQU 90000010

0001 SPRO EQU 990000001

0029 SPSR EQU $29 SPI STATUS REG STER

0080 SPI F EQU %10000000 SPI | NTERRUPT REQUEST

0040 WCOL EQU 991000000 WRI TE COLLI SI ON STATUS FLAG

0010 MODF EQU 990010000 SPI MODE ERROR | NTERRUPT STATUS FLAG

002a SPDR EQU $2A SPI DATA REG STER
002b BAUD EQU $2B SCI BAUD RATE CONTROL REQ STER
0080 TCLR EQU 910000000 CLEAR BAUD COUNTER CHAI N ( TEST ONLY)
* SERI AL PRESCALER SELECTS
* SCP1 SCPO DIV E BY
* 0 0 1
* 0 1 3
* 1 0 4
* 1 1 13

0020 SCP1 EQU 990100000
0010 SCPO EQU 290010000

0008 RCKB EQU 990001000 SCI BAUD RATE CLOCK TEST (TEST ONLY)
* SCl RATE SELECT BIT 2 THRUBIT O
* SCR2 SCR1 SCRO PRESC OQUT DIV BY
* 0 0 0 1
* 0 0 1 2
* 0 1 0 4
* 0 1 1 8
* 1 0 0 16
* 1 0 1 32
* 1 1 0 64
* 1 1 1 128
0004 SCR2 EQU 90000100
0002 SCR1 EQU 990000010
0001 SCRO EQU 90000001

002c SCCR1 EQU $2C SCI CONTROL REG STER 1

0080 R8 EQU 910000000 RECEI VE BIT 8
0040 T8 EQU %91000000 TRANSMT BIT 8
* MODE SELECT
* 0 = 1 START, 8 DATA, 1 STOP
* 1 = 1 START, 8 DATA, 9TH DATA, 1 STOP BIT
0010 M EQU 90010000
* WAKE = WAKE UP (BY ADDRESS MARK/ | DLE)
* 0 = WAKE UP BY | DEL LINE
* 1 = WAKE UP BY ADDRESS MARK
0008 WAKE EQU 990001000

002d SCCR2 EQU $2D SCI CONTROL REG STER 2

0080 TIE EQU %10000000  TRANSM T | NTERRUPT ENABLE

0040 TC E EQU %91000000 TRANSM T COVPLETE | NTERRUPT ENABLE
0020 RIE EQU 990100000 RECEI VER | NTERRUPT ENABLE

* I DLE LI NE | NTERRUPT ENABLE
* O=I NHI BI T | NTERRUPTS
* 1=ENABLE | NTERRUPTS

Page 54 http://www.micronator.com



0010
0008

0004

0002
0001
002e
0080
0040
0020
0010
0008
0004
0002

002f

0030
0080

0020

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

990010000
990001000

990000100

90000010
990000001
$2E

%10000000
991000000
990100000
990010000
990001000
990000100
90000010

$2F
$30
910000000

990100000

290010000

TRANSM TER ENABLE ( TOGGLE TO QUEUE | DLE CHAR)
RECEI VER ENABLE

0=0OFF

1=0ON

RECEI VER WAKE- UP CONTROL
0=NORMAL
1=RECEI VER ASLEEP

SEND BREAK

SCI STATUS REG STER

TRANSM T DATA REG EMPTY FLAG
TRANSM T COVPLETE FLAG
RECEI VE DATA REG FULL FLAG

I DLE LI NE DETECTED FLAG
OVER- RUN ERROR FLAG

NO SE ERROR FLAG

FRAM NG ERROR FLAG

SCI DATA REQ STER

RECEI VE AND TRANSM T DOUBLE BUFFERED
A/ D CONTROL/ STATUS REG STER

CONVERSI ONS COVPLETE FLAG ( SETS AFTER 4TH CONVERSI ON)

CONTI NUOUS SCAN CONTROL
0=4 CONVERSI ONS AND STOP
1=CONVERT CONTI NUQUSLY

MULTI PLE CHANNEL/ SI NGLE CHANNEL CONTROL
0=CONVER S| NGLE CHANNEL
1=CONVERT FOUR CHANNEL GROUP

COD CC CB CA CHANNEL SI GNAL RESULT | N ADRX

0008
0004
0002
0001

0031
0032
0033
0034

0035
0036

ILIE  EQU
TE EQU
*
*
*
RE EQU
*
*
*
RWU EQU
SBK EQU
SCSR  EQU
TDRE EQU
TC EQU
RDRF  EQU
IDLE  EQU
R EQU
NF EQU
FE EQU
*
SCDR  EQU
ADCTL EQU
CCF EQU
*
*
*
SCAN  EQU
*
*
*
MLT  EQU
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
cD EQU
cC EQU
cB EQU
CA EQU
*
ADRL  EQU
ADR2  EQU
ADR3  EQU
ADR4A  EQU
RESVD2 EQU
RESVD3 EQU

%90001000
290000100
290000010
290000001

$31
$32
$33
$34

$35
$36

0 0 0 0 ADO PORT EO ADR1
0 0 0 1 ADO PORT E1 ADR2
0 0 1 0 ADO PORT E2 ADR3
0 0 1 1 ADO PORT E3 ADR4
0 1 0 0 ADO PORT E4 ADR1
0 1 0 1 ADO PORT E5 ADR2
0 1 1 0 ADO PORT E6 ADR3
0 1 1 1 ADO PORT E7 ADR4
1 0 0 0 RESERVED ADR1
1 0 0 1 RESERVED ADR2
1 0 1 0 RESERVED ADR3
1 0 1 1 RESERVED ADR4
1 1 0 0 VREF HI ADR1
1 1 0 1 VREF LOW ADR2
1 1 1 0 VREF HI /2 ADR3
1 1 1 1 TEST/ RESERVED ADR4

A/ D RESULT REG STERS

UNUSED
UNUSED

http://www.micronator.com

Page 55



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

0037 RESVD4 EQU $37 UNUSED
0038 RESVD5 EQU $38 UNUSED
* SYSTEM CONFI GURATI ON OPTI ONS

0039 OPTION EQU $39
* A TO D POAER UP

* 0= A/ D SYSTEM PONERED DOWN
* 1= A/ D SYSTEM POVERED UP
0080 ADPU EQU 910000000
* CLOCK SELECT
* SHOULD BE USED | F E LESS THAN 1MHZ
* 0= A/D & EE USE SYSTEM E CLOCK
* 1= /D & EE USE AN I NTERNAL R-C CLOCK
0040 CSEL EQU 991000000
* I RQ SELECT EDGE SENSI TI VE ONLY ( Tl ME PROTECTED)
* 0= | RQ CONFI GURED FOR LOW LEVEL
* 1= I RQ CONFI GURED FOR FALLI NG EDGES
0020 | RQE EQU 990100000
* ENABLE OSCI LATOR START UP DELAY ( EXI TI NG FROM STOP)
* 0= NO DELAY
* 1= A DELAY IS | MPCSED
0010 DLY EQU 990010000
* CLOCK MONI TOR ENABLE
* 0= DI SABLED
* 1= SLOW OR STOPPED CLOCKS CAUSE RESET

0008 CMVE EQU %90001000
COP TI MER RATE SELECT BI TS
CR1 CRO E/ 2715 DIV BY

*

* 0 o0 1
* 0 1 4
* 1 0 16
* 1 1 64

0002 CR1 EQU 990000010
0001 CRO EQU 90000001
CRlL CRO K/ 2715 DIV BY

*
*
* 0 o0 1
* 0 1 4
* 1 0 16
* 1 1 64
003a  COPRST EQU  $3A ARM RESET COP TI MER Cl RCUI TRY
003b PPROG EQU  $3B EEPROM PROGRAMM NG REGI STER
003c HPRIO EQU  $3C
* READ BOOTSTRAP ROM (ONLY WRI TABLE | F SMOD=1)
* 0= BOOT ROM NOT | N MAP ( NORMAL)
* 1= BOOT ROM ENABLED
0080 RBOOT EQU 940000000
* | NTERNAL READ VI SI BI LI TY
* 0= NO VI SIBILI TY OF | NTERNAL READS ON EXTERNAL BUS
1= DATA FROM | NTERNAL READS |'S DRI VEN OUT DATA BUS
0010 RV EQU  9%0010000

SPECI AL MODE SELECT
MODB MODA  MODE DESCR SMOD MDA
SINGLE CHIP O
EXPANDED MUX 0O
BOOTSTRAP 1
SPECI AL TEST 1

E I L

0040

z
&

991000000

:
%
g

Page 56 http://www.micronator.com



0020

0008
0004
0002
0001

003d
0080
0040
0020
0010
0008
0004
0002
0001

003e
0080
0020
0010
0008
0004
0002
0001

003f

0008

0004

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

MDA

EQU

EQU

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU

EQU

290100000

990001000
990000100
990000010
90000001

$3D

940000000
%91000000
990100000
990010000
%90001000
%90000100
290000010
90000001

$3E

940000000
990100000
990010000
290001000
90000100
90000010
290000001

$3F

990001000

290000100

PRI ORI TY SELECT
MAY ONLY BE WRITTEN IF | BIT IN CC REG IS 1
PSEL3 PSEL2 PSEL1 PSELO | NTERRUPT

TI MER OVERFLOW

PULSE ACCUM OVERFL
PULSE ACC EDGE

SPI XFER COVPLETE

SCl SERI AL SYSTEM
RESERVED ( DEFAULT | RQ)
IRQ (PIN OR PAR |/0)
REAL TI ME | NTERRUPT
TIMER | NPUT CAPTURE 1
TI MER | NPUT CAPTURE 2
TIMER | NPUT CAPTURE 3
TI MER OUTPUT COVPARE 1
TI MER OUTPUT COVPARE 2
TI MER OUTPUT COMPARE 3
TI MER OUTPUT COVPARE 4
TI MER OUTPUT COVPARE 5

PRPRPPRPPRPPPLPPRPOO0OO0OO0OOOOO
PRPRPPOOOOCORRRLRRPRLROOOO
PP OOFRRPOORRFROORREROO
POFRPOFRORORPRORORORO

RAM AND |/ O MAPPI NG REG STER

FACTORY TEST REG STER
RESTRI CTED TEST MODES ONLY

TEST | LLEGAL OPCODE

QUTPUT CONDI TI ON CODE REG STAT TO Tl MER PORT
TI MER DI VI DER CHAI N BYPASS

DI SABLE RESETS FROM COP AND CLOCK MONI TOR
FORCE CLOCK MONI TOR FAI LURE

FORCE COP WATCHDOG FAI LURE

TEST CONFI GURATI ON

CONFI GURATI ON CONTROL REG STER

SECURI TY MODE DI SABLE ( MASK)
0=SECURI TY MODE
1=NO SECURI TY

COP SYSTEM DI SABLE
0=COP SYSTEM ENABLED (FORCES RESET ON TI MEQUT)
1=COP SYSTEM DI SABLED

ROM ENABLE

0= ROM IS NOT I N THE MEMORY MAP
1= ROM ON AT $EO000 TO $FFFF

http://www.micronator.com Page 57



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

0002 ROMON  EQU 90000010

* EEPROM ENABLE
* 0= EEPROM I S NOT I N THE MEMORY MAP
* 1= EEPROM ON AT $B600 TO $B7FF

0001 EEON EQU %90000001

* | NTERRUPT VECTOR ASSI GNVENT
ffcO  RESVECO EQU  $FFCO RESERVED

ffc2  RESVECLEQU  $FFC2 RESERVED

ffc4  RESVEQ2 EQU  $FFC4 RESERVED

ffc6  RESVEC3EQU  $FFCH RESERVED

ffc8  RESVECA EQU  $FFC8 RESERVED

ffca  RESVECS EQU  $FFCA RESERVED

ffcc  RESVECS EQU  $FFCC RESERVED

ffce  RESVECT EQU  $FFCE RESERVED

ffdo  RESVECB EQU  $FFDO RESERVED

ffd2  RESVECO EQU  $FFD2 RESERVED

ffd4 RESVECAEQU  $FFD4 RESERVED

ffde  VECSCI EQU  $FFD6 SCl SERI AL SYSTEM
ffds  VECSPI EQU  $FFD8 SPI SERI AL TRANSFER COVPLETE
ffda VECPAI EQU  $FFDA PULSE ACC | NPUT EDGE
ffdc  VECPAO EQU  $FFDC PULSE ACC OVERFLOW
ffde VECTOY EQU  $FFDE TI MER OVERFLOW

ffe0  VECTO6 EQU  $FFED TI MER OUTPUT COVPARE 5
ffe2  VECTO4 EQU  S$FFE2 TI MER OUTPUT COMPARE 4
ffed VECTGB EQU  $FFE4 TI MER OUTPUT COMPARE 3
ffe6  VECT2 EQU  $FFE6 TI MER OUTPUT COVPARE 2
ffes VECTOL EQU  $FFE8 TI MER OUTPUT COVPARE 1
ffea VECTI3 EQU  $FFEA TIMER | NPUT CAPTURE 3
ffec VECTI2 EQU  $FFEC TIMER | NPUT CAPTURE 2
ffee VECTI1 EQU  $FFEE TI MER | NPUT CAPTURE 1
fff0  VECRTI EQU  $FFFO REAL TI ME | NTERRUPT
fff2 VECRQ EQU  $FFF2 | RQ

fff4  VECXIRQEQU  $FFF4 XI RQ

fff6  VECSW EQ  $FFF6 SW

fff8 VECILL EQU  $FFF8 | LLEGAL OPCODE TRAP
fffa VECCOP EQU  $FFFA COP FAI LURE ( RESET)
fffc VECCMF EQU  $FFFC COP CLOCK MONI TOR FAI L ( RESET)
fffe VECRES EQU  S$FFFE RESET

Page 58 http://www.micronator.com



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Symbols

11, 12

-11
$0280-$02BF 51
$02C0-$0FFF 51
$8000 to $DDFF 20
$DEOO-$FFFF 20
$FFD4 45
$FFF 45

()12

*11
*[12

+11

+-12

, TO45

AND. 11, 12
.EOR. 11, 12
OR. 11,12
/11

=12

>12

>=12

?25

“BASIC11” Memory Map 47

“MicroNator” Memory Map 50

Numerics

10 msec 20
100,000 times 20

A

A 12,12
A*B 11
A+B 11
A/B 11
A=B 12
A>=B 12
A>B 12
A-B 11
AB 11, 12

ABS(X) 35
ADC(X) 37
ADCTL 55
ADR155

ADR2 55

ADR3 55

ADR4 55
Alternate-C 12, 15, 28
Alternate-L 37
Assignment 19
A-to-D 39

A-to-D converter 37
Auto Start 31
AUTOST 17

BASBEG 47

BASEND 47

BAUD 54

Bit 7 of PORTA 39

BUILT IN FUNCTIONS 35
BYTE 38

C

CALL(X) 37

CFORC 51

CHR3$(X) 36

CLEAR 15

CMF 45
COMMANDS 15
Commands 15
Conditional Tests 23
CONFIG 57

CONT 15, 24, 28
Contents 5

Contents at a Glance 5
Control Transfer 22
COP 45

COPRST 56
COPYRIGHT NOTICE 3

59



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

CPHA 54
CPOL 54

D

DATA 11, 19

Data Direction Register 21
DDR 21, 38

DDRA7 39

DDRC 51

DDRD 51

DIM 31

download 38

EEP() 20

EEP(X) 38

ELOAD 16

END 12, 28

ENDWH 27

ERROR REPORTING 41
ESAVE 16

FDIV(X,Y) 35
fields 25

FOR 26

FOR - NEXT 15
FOR NEXT 26
FREE 17

G

GOSUB 13, 15, 22, 32
GOTO 13, 22, 32

H

Hardware Related Functions 37

HC11 REGISTERS 51
HEX (X) 36
HEX2(X) 36

60

HPRIO 56

[/O port 38

[/O ports 21

IF THEN 23

IF THEN ELSE 24
ILLOP 45
INBYTE 10, 11, 25
INDEX 59

INIT 57

INPUT 10, 11, 24
INPUT# 25
Input/Output 24
Integer Constants 9
Interrupt Vector Table 45
IRQI 45

JSR 37
JUMP 45

LET 10, 19

Lines9

LIST 15

LLIST 15

Looping Constructs 26

M

Mathematical Functions 35
MC146818 RTC 22

Memory Map 47, 50
Miscellaneous Statements 31
MODF 54

N

nested 26
NEW 16



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

NEXT 27
NOAUTO 17
NOT 12
NOTE 3

OC1D 52

OC1IM 52

ON GOSUB 23

ON GOTO 23
ONIRQ 30
ONPACC 30
ONTIME 29
Operating Modes 12
Operator Precedence 12
Operators 11
OPTION 56

PACC 22, 39
PACCIE 45
PACCOV 45

PACNT 53

PACTL 39, 53

page zer 45

PAOVI 53

PD2..PD5 21, 39
PEEK(X) 38

PIOC 51

POKE 32

PORTA 21, 38, 39, 51
PORTB 21, 38, 39, 51
PORTC 21, 38, 39, 51
PORTCL 51

PORTD 21, 38, 51
PORTE 38, 39, 51
PPROG 56
PREFACE 3

PRESCALE FACTOR 53

PRINT 24

INDEX

Print Functions 36
Program Termination 28
Pulse Accumulator 39

R

RE 55

READ 10, 11, 20
Rea Time Clock 21
Real Time Event Statements 28
REGS 51

REM 13, 32
Remarks 13

RESET 31
RESTORE 20

RETI 31

RETURN 22
RND(X) 35

RTI 45

RTII 53

RTS 37

RUN 16

S0-S9 37
SCCR1 54
SCCR2 54
SCDR 55

SClI BAUD RATE CLOCK TEST 54

SCI RATE SELECT 54
SCSR 55

SGN(X) 36
SLEEP 31

SPCR 53

SPDR 54

SPI 21, 39

SPSR 54
STATEMENTS 19
STOP 12, 28

Stop Mode 31
String Constants 9



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

INDEX

T X

TAB(X) 36 XIRQ 31
Table of Contents 7
TCIE 54

TCLR 54
TCLT152
TCLT252
TCNT 52

TE 55
TEST157
TFLG1 52
TFLG2 53
THE BASICS 9
TIC152
TIC252
TIC352
TIES4

TIME 21, 39
TMSK152
TMSK2 53
TOC152
TOC2 52
TOC352
TOCA4 52
TOC5 52

TOI 53

trace mode 33
TROFF 33
TRON 33

VARBEGIN 47
VAREND 47
Variable Assignment 10

wW

WARRANTY 3
WHILE 15, 27
WORD 38
write/erase cycles 20

62



MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Power
Gnd

Connector f
CPU

Connector for

Input ser W 1/0

or

/0

I—

]

[]
O

ODDOOCGGC
OO0 Q0000

DOCGCCTODDOO

O g 1O

Oooococaodbooocobad

G O D

O

QU

[SNSNS NSRS
0CCOOD
[P eleloRe}

User
Wire-
Wrapped
Area

Q

COUOUOCUUOUOC
GOODOCOODOCC
0oL 00000 000
COo0L 00000
COoOO0ODO0OGCOO

[CNCRS]
[CRRS]
GO0

SRCACECRIRSRVEVECECESEVAVECECRGNACACRGREPNV]
sleleieRsRsREvIvECESEVACECE RNV ACACESNV]
DCCODDACOODOCOODOGCODO
DO0OQL00Q0LQ0OQ0L000000
bccooobaoocoobo0ocoO0OOL0OCO0OODO
SECACECRIRSRVEVECECESEVAVECECRONACACRGEPNV]
[sleleieRsRsRvivIvECEsRvVACECH RNV A ACEPNV]
DCCODDACOODOCOODOGCODO
DOCORL 0000 Q00Q0LQ00000Q
bDccoobbaoocoob0O0GcOO0OO0OCOCODO
bDccoobbaocoooo 00 0acloo
DOCCUOOCACVUOU {j

2

oD

(e}

coQ
[N eROKD]
CoUoO
[eAeReks)

O
Mo
e}
Us
=
O
O

Q
O
O

O
O

OO0D0CO0
O

G
<
[
(&3
G
G
Q,

COUO VOO
QOU9O
[SASRORe!
[SASRSRV!
[} oNoks]
COUTO
COUO
[sYa¥apal
[SASRSRV!
[} oNoks]
[} oNoks]
COUO
GOO0ODoOo

Q

\\&OOOQQOOOQQOOO

DGCCGCODLDLDACGOOD

N

Q00D Q00Y

CODOOCTODD
QO 0Qo0d

9G208¢X
NOddd3d
000000
0000000
Niwha]
LETDHYALANS
0000000000

i

00000000000

[ERSReRvNe]
[SEeReRee]

0—0

[myapzs

U4 MUl@

CE2

vovoooooooonUso

SP1*

omoue

o

PALCE22V

0GC

$0240-$027F

¢odbDoGcoOLOa

RNZ
SRS ESReIN|

a RN 1
*O cCoOODOoCOO™d

codbocoodbdoO

?

oTSw

voooovod
MCESHCES |

godbo0CcGc0o0D

— Bus
Connector

Pin #2
Pin#1

-

e

0G00D00CC

o{g;m 3L343J3

I:Ep 22” eco ©

.CLl

MAX23G6CN

cC12z

=R Xvlwl O —0CH,
oD OO Q@ﬂﬂmo

Reserved O ea

to the D
User By
CEBM

GCODDCTCODDATO

B EY oihels

D3
69

W1

%%

e

OO

[O O]

Scde 1/1

Fig:1 MicroNator System

A

DB9 Reset

Communication
with the
IBM-PC

m

i
%

On/Off

Power On LED

Page 63



O0O0OO0OO0O0O0
Ooooo0o00O0

] =
O —
O
O
O

O00O0O0O0O0O0O0D0O0O0
O0OO0OO0OO0OO0OO0OO000000

O

F;1ooooooooooooooooooooooooo ¥JS
0000000000000 0000000000000
() 0000000000000 00000000000000 7
0000000000000 0000000000O0000
0000000000000 00000000000O00000 Y
000000000000 000000000000000OO00000 -
000000000000 000000000000000O00000
000000000000 00000000000000000 o o
0000000000000 000000000000000 \%
oooooooooooooooooooooooooooo%H o
0000000000000 0000000000Xloooa|N 0
OOOOOOOOOOOOOOOOOOOO[]II!HIDCloa
oooooooooooooooooooo\+ H
000000000000 0000000O0 lgl oftanto o
0000000000000 0000000 C2 IE!i Ul
00000000000000000000 o
0000000000000 000000O0 oo
— oo
o o o o o o) oo
o) o 0 o o o) 00
o o o o ol uv|o oo
oo O oo o o %o 0o
of N oo o ol + o oo
o % o o T o ol I]jo o
o Ny [ © D o o { o
o g1 ©o© = o ol q|o
o o» |[0oo o o o)
e] ! o O e} e] O
o g o o o iﬂfLJZ
o o o o bO-0
o o o o bcz
o oo O
[ [
o U4 T-2U10D
DC4 ocs ces
RE 1
000000000000UDH of47kFoUB @
‘ PALCE22V \O‘ 0oocooood O-égg ©
0O00DOOOOOOOOO IO MCesHCES ’?FCE@ D4
pEse 00000000 1go0 {0
RN2 RE3 X2 o2l j] o) O
ol ikto ’o] - ’o] A Io o
|| ©ccel - =5

oCcsA RN1
bcs -0 0000000 Dn O!E!ﬂ
2 H-C

O O
ceplzzntese ©
000000000000 Reo

O Ogoooo O
0000

O
6]
O

@]
O
@]
@]
@]

goooo0000

O00000O000O0OO0OO0OOO0OOOOOOOOOOOO
Q00000000000 OOOOOOOOOOOOO

[oNe]

O

C
0)
d
w

—

=00 ()

]

RF-232
1404, rue Galt
Montréal Qc H4E 1H9
(514) 761-4201

0131



