
MicroNator

UNIVERSAL
DEVELOPMENT BOARD

Version 4.04

User's Manual
Version 4.04a

RF-232
http://www.micronator.com

USER

ISBN 2-9803460-1-2

© Copyright 1994 by RF-232 (2968-6177 QUÉBEC. Inc.)
Dépôt Légal - Bibliothèque Nationale du Québec, avril 1995.

PRINTED IN CANADA

MicroNator

UNIVERSAL
DEVELOPMENT BOARD

Version 4.04

User's Manual
Version 4.004a

RF-232

http://www.micronator.com

MicroNator

MicroNator UNIVERSAL DEVELOPMENT BOARD USER MANUAL

All rights reserved. Printed in Montréal, Québec. No part of this book may be used or repro-
duced in any form or by any means, or stored in a data-base or retrieval system, without prior
written permission of RF-232, except in the case of brief quotations embodied in critical arti-
cles and reviews. Making copies of any part of this book for any purpose other than your own
personal use is a violation of copyright laws. For information, contact:

RF-232
1404 rue Galt

Montréal, Qc H4E 1H9
CANADA

Tél: (514) 761-4201

RF-232
21 rue André Gide

59123 ZUYDCOOTE
FRANCE

Tél: 03 28 58 28 39

micronator@micronator.com

This book is sold as is, without warranty of any kind, either express or implied, respecting the contents of this
book, including but not limited to implied warranties for the book's quality, performance, merchant ability, or fit-
ness for any particular purpose. Neither RF-232 nor its dealers or distributors shall be liable to the purchaser or
any other person or entity with respect to any liability, loss, or damage caused or alleged to be caused directly or
indirectly by this book.

ISBN 2-9803460-1-2

© Copyright 1994 by RF-232 (2968-6177 QUÉBEC. Inc.)
Dépôt Légal - Bibliothèque Nationale du Québec, avril 1995.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 1

MicroNator

UNIVERSAL
DEVELOPMENT BOARD

User’s Manual

RF-232 reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. RF-232 does not assume any liability arising out of the application or
use of any product or circuit described herein; neither does it convey any licence under its patent
rights nor the rights of others.

Information contained in this manual applies to
Version (4.04) MicroNator UNIVERSAL DEVELOPMENT BOARD

serial numbers 4000 through 9999

IBM-PC is a registered trademark of International Business Machines Corp.
Apple is a trademark of Apple Computer, Inc.
Macintosh is a trademark licensed to Apple Computer, Inc.
Macintosh is a trademark licensed to McIntosh Laboratory, Inc.

The computer program supplied with MicroNator System and to be written in the EEPROM of the
device may contains material copyrighted by RF-232, first published 1993, and may be used only
under a licence.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 2 http://www.micronator.com

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 3

PREFACE

Unless otherwise specified, all address references are in hexadecimal through-
out this document.

An asterisk (*) following the signal denotes that the signal is asserted, valid, or
true when the signal is low.

MicroNator, CPU-11/64e2, and UCT-11/64e2 System refer to the same system.

All Vcc & Gnd are shown on schematics.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 4 http://www.micronator.com

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 5

Contents at a Glance

GENERAL INFORMATION..7

HARDWARE PREPARATION ...11

OPERATING INSTRUCTIONS...15

HARDWARE DESCRIPTION..41

MONITOR PROGRAM ...45

SUPPORT INFORMATION ..57

EXPANSION OPTIONS...65

APPENDIX A - S-RECORD INFORMATION67

APPENDIX B - CONFIG REGISTER.....................................71

APPENDIX C - REAL TIME CLOCK ROUTINES.................73

INDEX ...79

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 6 http://www.micronator.com

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 7

CHAPTER 1

GENERAL INFORMATION

1.1 INTRODUCTION

This manual provides general information, hardware preparation, installation, operating instructions,
functional description, and support information for the Universal Development Board, hereafter
referred to as MicroNator System or MicroNator “Central Processing Unit 68HC11 EEPROM”).

Downloading S-record information are contained in appendix A.

1.2 SPECIFICATIONS

MCU TOSHIBA TMP68HC11A0T, or TMP68HC11A1T, or
TMP68HC11A8T, or TMP68HC11E0T, or
TMP68HC11E1T. (52 pins PLCC with socket)

MOTOROLA MC68HC11A0FN, or MC68HC11A1FN or MC68HC-
11A8FN or MC68HC11E0FN, or MC68HC11E1FN.
(52 pins PLCC with socket)

Clock: 4.9152 MHz, crystal controlled, giving 1.2288 MHz bus
operation

Monitor Size: 8.1 KBytes: all replaceable by user code

Memory Size: 32 KBytes EEPROM & 32 KBytes of RAM

Real Time Clock MC68HC68T1P @ 32.768 KHz (default).
[1.048576 MHz, 2.097152 MHz, or 4.194304 MHz].

MCU Extension I/O Ports HCMOS compatible

Terminal I/O Port RS-232C compatible: XON/XOFF protocol

Temperature
Operating -40 to +70°C
Storage -55 to +125°C

Relative Humidity 0 to 90%: non-condensing

Power Requirements: 5 VDC @ 80 mA (MAX)

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 8 http://www.micronator.com

Communication Cable AT-Cross-over: DB25F->DB9F

Dimensions:
Width 4.75 in. (12.06 cm)

Length 5.725 in (14.54 cm)

Wire-wrap Area:

Area Approx. 4.3 in. square (10.92 cm2)
Holes 437

OPTIONS:

• Casing 6.06" x 6.25" x 2.5"
6.06" x 6.25" x 3.25"

• Expansion Board To be inserted on top or on the bottom of CPU-
11/64 system

• Extra Connector BUS-Connector for additional wire wrap expan-
sion board

• USER BOARD LCD: (2 x 16) or (4 x 20)
Keyboard: (4 x 4) hex

• U I/O Board 8 Opto-Input & 8 Relay-Output

1.3 FEATURES

• An economical means of debugging user assembled code and eval-
uating 68HC11A0/A1/A8/E0/E1 micro controller.

• Monitor/debugger firmware.

• One-line assembler/disassembler.

• PC downloading capability.

• 68HC11 based debugging/evaluating circuitry.

• RS-232C compatible using XON/XOFF communication.

• 20 I/O pins, IRQ*, XIRQ*, +5Vdc, and GND on the DB25F I/O

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 9

connector.

• Real Time Clock INCLUDED

• Communication Cable DB25F-DB9F INCLUDED

• Single (+5 Vdc) input power source INCLUDED

• 32 KBytes of EEPROM and 32 KBytes of RAM INCLUDED

• Motorola (AS11.EXE) Cross-Assembler INCLUDED

• Complete monitor program “MONITEUR” INCLUDED

• "C" language from DDSystem OPTION

• Casing: 6.06" x 6.25" x 2.5" or 6.06" x 6.25" x 3.25" OPTION

No jumper, no PCB TRACE to cut,
no EPROM eraser nor EPROM programmer required.

1.4 GENERAL DESCRIPTION

The MicroNator System provides a tool for designing, debugging, and evaluating 68HC11A1 Micro
controller Unit “MCU” based system equipment. By providing all of the essential MCU timing and I/
O circuitry, the MicroNator System simplifies user evaluation of his prototype hardware/software
design. The MicroNator System requires a PC compatible computer with one COM port.

Entering data, program debugging, and programming external EEPROM is accomplished by the
monitor EEPROM firmware via a IBM-PC, or compatible, connected to the MicroNator System SCI
port connector.

Downloading programs directly from a IBM-PC, or compatible, to the MicroNator System is accom-
plished via the SCI port of the MCU.

The MicroNator System standard mode of operation is the expanded-multiplexed mode. It is also pos-
sible to put the MCU in single-chip mode by applying the proper signal on the CPU-BUS pins
labelled MODA BUS pin # 61 and MODB BUS pin # 58.

1.4.1 Program Development

MCU code may be generated using the resident one-line assembler/disassembler, or may be down-
loaded from S-Record files to the user EEPROM through the PC serial port. User code may then be
executed using various debugging commands in the monitor. User code may also be started using the

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 10 http://www.micronator.com

reset switch.

Independent 150 to 19.2K baud rate selection capabilities are provided for the SCI port connector. All
baud rates are software selectable.

“MONITEUR” enables the user to, check, erase, program, verify, and copy the entire external
EEPROM 32 KBytes without the use of EPROM eraser or programmer.

1.5 EXTERNAL EQUIPMENT REQUIRED

• Host computer (PC compatible).

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 11

CHAPTER 2

HARDWARE PREPARATION

2.1 INTRODUCTION

This chapter provides unpacking instructions, hardware preparation, and installation instructions for
the MicroNator System. For detailed hardware discussions refer to CHAPTER 6 .

2.2 UNPACKING INSTRUCTIONS

NOTE
If shipping carton is damaged upon receipt, request carrier’s agent

be present during unpacking and inspection of the MicroNator
System package

Unpack MicroNator System from shipping box. Refer to packing list and verify that all items are
present. Save packing material for storing or reshipping.

2.2.1 Registration

Fill the included registration card and mail it as soon as possible so as to be kept informed of the latest
developments and to receive upgrades of “MONITEUR” free of charge for a period of one year.

2.3 HARDWARE PREPARATION

This portion of text describes the inspection/preparation of MicroNator System components prior to
installation. This description will ensure the user that the MicroNator System components are prop-
erly connected together for system operation. The MicroNator System has been factory-tested before
shipment.

MicroNator System should be inspected prior to installation. Figure: 1 illustrates the MicroNator
System’s connectors and switches:.

- ON/OFF (Switch SW2) is used for turning on/off the MicroNator System.

- Power LED (D3) Power-on LED.

- Reset (Switch SW1) is used for resetting the MicroNator System.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 12 http://www.micronator.com

- DB9 (Connector J2) connects the MicroNator System to the PC.

- SP1 (SP1) spare chip-select for user WW area. Active LOW from $0240-$027F.

- Gnd (Connector P1-1) DC ground, square pad on PCB.

- POWER (Connector P1) wall-mounted power supply. Gnd is pin #1 (square).

- DB15 I/O Is used for interconnection of external I/O signals to the user WW area.

- DB25 I/O (Connector J5) is used for interconnection of external I/O signals to the
MicroNator System.

2.3.1 Wall Mounted DC Power Supply input

Figure: 2 shows the wall-mounted power supply. The unit plug into an AC wall socket and the small
female connector plug into the MicroNator System. The user should take care to respect the polarity
of the plug or he might damage the units.

DB25 I/O

DB15 I/O

Power

Gnd

On/Off

Reset

DB9

 Figure: 1 MicroNator System

SP1*

Power LED

Figure: 2 Wall-mounted power supply

Female

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 13

2.3.2 Serial Cable

Figure: 3 shows the standard cable used for the communication between the PC and the system. The
connector to be inserted into the serial port of the PC is a DB25 female socket and the one to be
inserted into the MicroNator System is a DB9 female socket. The plug on the MicroNator System is a
DB9 male connector.

2.3.3 Software Installation

In order to install the software all the user has to do is to put the supplied disk into the computer and
to run INSTALLA or INSTALLB. The INSTALL program will create a directory in drive C:\ and
“xcopy/s” disk A: to it.

INSTALL does not update the PATH.

2.3.4 Final Installation

• Place the MicroNator System near the PC.

• Installation of the communication cable:

- Plug the DB25 female connector into the serial port of the PC.
- Plug the DB9 female socket into the DB9 male plug of MicroNator System.

• Installation of the power supply:

- Connect the female connector of the wall-mounted power supply into the MicroNator Sys-
tem male input power connector.

Figure: 3 Serial Connector & Signals

PC-SGND

RTS*
PC-RX

PC-TX
DTR*

J2
5
9
4
8
3
7
2
6
1

PC COM PORT MicroNator
J2 Connector

FEMALE FEMALE

PC COM PORT MicroNator
J2 Connector

FEMALE FEMALE

PC-SGND

PC-RTS*
PC-RX

PC-TX
PC-DTR*

J2
5
9
4
8
3
7
2
6
1

M
N

P
C

PC-COMx
5
9
8
7
2
6
3
4
1

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 14 http://www.micronator.com

- Plug the wall-mounted power supply into a wall AC socket.
- Turn on the MicroNator System power-on switch.

• Installation of the software:

- Place the diskette into the drive A.
- Type A: to go to disk A.
- Type INSTALLA.

• Go to the UCT11 directory (on drive C:)created by the INSTALL program:

- Execute TALK.EXE.

- (Refer to section “Communication with MicroNator System” in section 3.4.2 , for TALK
switches).

- The prompt from the MicroNator System will appear.

Now all the Monitor commands are available.

This is all what is required to do.

No jumpers installation, no PCB trace to cut nor anything else to do.

...Just enjoy...

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 15

CHAPTER 3

OPERATING INSTRUCTIONS

3.1 INTRODUCTION

This chapter provides the user with the necessary information to initialize and operate the MicroNator
System. This section consists of the standard (defaults) communication settings , command line for-
mat, monitor command, and operating procedures. The operating procedures consist of assembly/dis-
assembly and downloading descriptions and examples.

3.2 STANDARD (DEFAULTS) COMMUNICATION SETTINGS

The MicroNator System MCU SCI has been set for 19200 baud using a 4.9152 MHz crystal. This
baud rate can be changed with software by reprogramming the BAUD register in the MCU. The
BAUD register can be changed by instructions in the user program or by the memory change (MM)
command.

Another way to change the baud rate is to change the content of memory location @ $FF66: $02 will
give 19 200, $03 9600, $04 4800, $05 2400, and $06 will give 1200 BAUD. “MONITEUR” take
the value stored at this address (default is $02) to initialize the SCI baud rate upon reset.

The MicroNator System can transfer data faster than some terminal devices can receive them, which
at certain times, can cause missing characters on the terminal display screen. Memory display (MD),
trace (TRACE), and help (HELP) commands may be affected by this problem. The user can either
ignore the problem, switch to a slower baud rate, or use a different communications program. When
using the MD or TRACE commands, the missing character problem can be resolved by displaying
fewer address locations or tracing fewer instructions at a time, respectively. This problem will some-
time show on a PC, even on a 486/33.

NOTE:
At 19 200, with some PC, there might be some characters mis-aligned on the display
when dumping (MD) a long array of memory but it does not affect the content of the
memory nor the downloading of programs as there is communication error recovery in
the downloading procedure.

The monitor program uses part of the MCU external RAM located at $7F00-$7FFF. That way, all the
internal memory is available to the user program. The control registers are located at $1000-$103F.
The monitor program reserves the software INTERRUPT of the Output Compare #5 (OC5) for the
TRACE instruction, therefore TRACE cannot be used in user routine which uses OC5. Since PRO-
CEED and STOPAT commands indirectly use the TRACE function these commands also rely on the

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 16 http://www.micronator.com

OC5. Please remember that IRQ have to be enable to use those commands. TRACE can be used to
verify an IRQ routine as it is not the IRQ routine itself that disable the interrupts but the response of
the CPU to an interrupt. If you want the CPU to service an interrupt, they have to be enable, and if
they are enabled then TRACE can go through it.

3.2.1 Special (Reserved) Settings

Addresses $FFD0 to $FFD5 need special attention in order for the RESET vector to work properly
when using downloading procedures with “MONITEUR”.

Addresses $FFD0 and $FFD1 contain the version number of “MONITEUR”.

Addresses $FFD2 and $FFD3 contain a duplication of the RESET vector. When using “ALT” “B” or
“ALT” “L”, while in “MONITEUR” for downloading S-Record, TALK download a small special
program (“BS_EEPRM.BIN” which has to be in the same directory as TALK) into RAM for the
MCU to be able to program the EEPROM. When this small program is executed it writes the HPRIO
register to go to special bootstrap mode of operation and doing so the RESET vector at address
$FFFE get corrupted. That is why, when this small special program runs, it re-initialize the RESET
vector by reading the duplicated RESET vector at $FFD2-$FFD3 and copy it to $FFFE-$FFFF.

If only the user wants to integrate “MONITEUR” in his own program and uses downloading proce-
dure he has to make sure that addresses $FFD0 to $FFD5 contain the following:

 *** Vectors ***

ffd0 04 00 FDB $0400
ffd2 xx xx FDB MONITEUR
ffd4 00 00 FDB 0

($xxxx is the RESET vector, stored at $FFFE-$FFFF, i.e starting address of “MONITEUR” or user
program)

Most of the time the user will not have to modify those addresses. If the user doesn’t want to include
“MONITEUR” in his program, he doesn’t have to bother with the above.

3.3 MONITOR MEMORY

The MicroNator System allows the operator to use all the features of “MONITEUR” to evaluate his
software, however it should be noted (when designing) that “MONITEUR” uses some of the MCU
external RAM locations $7F00-$7FFF so leaving all of the internal 256 bytes to the user (i.e. $0000
to $00FF).

The user must be aware of the “MONITEUR” address location restrictions. TABLE: 1 lists the mon-
itor memory map.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 17

TABLE: 1 “Moniteur” Memory Map

ADDRESS DESCRIPTION

$0000-$00FF Available to the user
$0100-$01FF Other HC11 internal RAM, i.e. HC11E0, HC11E1, HC11E8...
$0200-$020F Reserved
$0210-$021F LCD & KBY expansion board
$0220-$022F UIO (Relays & Opto couplers) expansion board
$0230-$023F GAL Programmer expansion board
$0240-$027F SPARE chip select for WW
$0280-$02BF *** If Read, enables (HIGH) the RTC chip select for SPI

*** If Written, disables (LOW) the RTC chip select for SPI
$02C0-$0FFF Reserved, by 16 bytes increment, for future expansion and I/O
$1000-$103F MCU Registers
$1040-$7EFF User RAM

“MONITEUR”
$7F00-$7F40 “MONITEUR” uses those addresses for the user stack
$7F41-$7F53 Reserved
$7F54 B7..B4, 10 of seconds // B3..B0, unit of seconds
$7F55 B7..B4, 10 of minutes // B3..B0, unit of minutes
$7F56 B7..B4, 10 of hours // B3..B0, unit of hours

*** To set the RTC time, the order is SSMMHH for $7F54 to $7F56 and
HHMMSS to read the RTC time ($7F54-$7F56 will be modified in near future)

$7F57 Seconds for RTC
$7F58 Minutes for RTC
$7F59 Hour for RTC
$7F5A DOW, Day Of the Week for RTC
$7F5B DOM, Day Of the Month for RTC
$7F5C Month for RTC
$7F5D Year for RTC
$7F5E-$7F95 “MONITEUR” Stack
$7F95-$7FF0 “MONITEUR” Storage RAM
$7FF1 JMP SCI, see TABLE: 4 on page 53
$7FF4 JMP SPI
$7FF7 JMP TOC5
$7FFA JMP XIRW
$7FFD JMP SWI

$8000-$DEFF User program in EEPROM

$DF00-$E857 In-line Assembler (Can be remove if user need more room for his program)
$E858-$EB11 Disassembler (Can be remove if user need more room for his program)
$EB12-$FF64 “MONITEUR” (Look for the reset vector @ $FFFE-$FFFF in newer version of

“MONITEUR”)

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 18 http://www.micronator.com

$FF65-$FFCE Indirect JUMP, see TABLE: 3 on page 47
All JMPs are Buffalo 3.XX Compatible except for VECTINIT

$FFD0-$FFD5 Special Reserved, see 3.2.1 on page 16

$FFD6-$FFFF CPU Vector Table, see TABLE: 5 on page 55

3.4 OPERATING PROCEDURES

The MicroNator System is a simplified debugging/evaluating tool designed for debugging user pro-
grams and evaluation of the 68HC11 family devices.

3.4.1 Generating S-Record

After the user has written his assembly program he pass it through the included Motorola Cross-
Assembler until it is error-free. The Cross-Assembler then generates a S-Record file with the exten-
sion .S19. The generated S-Record has to be in the same directory than TALK.EXE, if it is not, the
user copy the S-RECORD into the same directory as TALK.EXE.

3.4.2 Communication with MicroNator System

To communicate with MicroNator System the user executes TALK.EXE with the following parame-
ters:

TALK [-f] [-p1 | -p2] [-r-]

< > No parameter (default).
< -f> To have all texts displayed in French.
< -p1> Same as no parameter (COM1).
< -p2> Communication port will be COM2.
< -r- > When TALK start communication, it will not reset CPU-11/64-e2 System.

TALK will initialize the specified communication port of the PC, generates a RESET of the MicroN-
ator System if the switch [-r-] was not specified, and will communicate with MicroNator System.

3.4.3 Downloading S-Record

The generated S-Record has to be in the same directory as TALK.EXE, if it is not the user copy the S-
RECORD into the same directory as TALK.EXE then he executes TALK.EXE with the proper
switches.

When the MicroNator System screen appears press “ALT” and “L” together. “Enter name of file to
download: ” will appear and the user type the name of the S-Record. The .S19 extension is

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 19

not necessary. Press RETURN and TALK will download the file.

After downloading “Load complete” will appear. Press any key to re-establish communication with
MicroNator System. “MONITEUR” MICRO CONTROLLER 68HC11 UCT11 V4.0 will be dis-
played and all the “MONITEUR” resources will be available to debug your program.

3.4.4 Reset

To RESET MicroNator System the user:

• Press the RESET SWITCH, on the front side of the enclosure, or...

• Turn the POWER SWITCH off then on again, or...

• While in communication with the MicroNator System, press “ALT” and “R” together, or...

• When executing TALK, do not specify the -r- switch.

3.4.5 Help File

While the user is in communication with the MicroNator System, he can press the F1 key and a small
help file will be displayed. Please note that not all of the commands in the HELP file are available
with version 4.04 (those related to BASIC).

3.4.6 Exit

To exit TALK and return to DOS the user types “ALT - X”.

3.4.7 No Communication with MicroNator System

After making sure that MicroNator System is connected to the right communication port and TALK
was used with the proper COMx port switch (-p1) or (-p2) and if there is still no communication with
MicroNator System it might mean that there is no “MONITEUR” in the EEPROM or that the user
program has change some of the codes of “MONITEUR”. In such a case, the user has to re-initialize
MicroNator System to the original factory settings:

To initialize MicroNator System to the original factory settings:

• Make sure the file UCT2.S19 is in the same directory as TALK.EXE.

• Execute TALK specifying the COMx port.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 20 http://www.micronator.com

• When the screen appears press “ALT” and “B” together and TALK will download UCT2.S19
(“MONITEUR”) to the EEPROM.

• After downloading “BOOTSTRAP OK” will appear.

• Press any key to re-establish the communication with MicroNator System.

• “MONITEUR” MICRO CONTROLLER 68HC11 UCT11 v4.0 will appear and all the “MONI-
TEUR” resources will be available.

3.4.8 Monitor Program

“MONITEUR” program is included in the distribution diskette and is called UCT2.S19.
BS_EEPRM.BIN is used by TALK for the downloading of programs from the PC into the system
memory. This special program has to be in the same directory as TALK.EXE. The same applies to
UCT2.S19 if you want to download “MONITEUR”, and to CONFIG.S19 if you want to change the
CONFIG register of the MCU.

3.5 COMMAND LINE FORMAT

The command line format is as follows:

> < command > [< parameters >] (RETURN)

> MicroNator System monitor prompt.
< command > Command mnemonic (single letter for most commands).
< parameters > Expression or address.
(RETURN) RETURN keyboard key - depressed to enter command.

NOTES

(1) The command line format is defined using special characters which have the following syntacti-
cal meanings:

< > Enclose syntactical variable
[] Enclose optional fields
[]... Enclose optional fields repeated

These characters are not entered by the user, however they are for definition purposes only.

(2) Fields are separated by any number of spaces, commas, or tab characters.

(3) All input numbers are interpreted as hexadecimal.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 21

(4) All input commands can be entered in either upper or lower case lettering. All input commands
are converted automatically to upper case lettering.

(5) A maximum of 35 characters may be entered on a command line. After the 36th character is
entered, the monitor automatically terminates the command entry and the terminal CRT display
the message “Too long”.

(6) Command line errors may be corrected by backspacing, or by aborting “CTRL-X”.

(7) Pressing “RETURN” will repeat the most recent command.

3.6 MONITOR COMMANDS

“MONITEUR” program commands are listed alphabetically by mnemonic in TABLE: 2 . Each of the
commands are described in detail following the tabular command listing. In most cases the initial sin-
gle letter of the command mnemonic or specific symbol can be used. A minimum number of charac-
ters must be entered to at least guarantee uniqueness from other commands (i.e., MO=MOVE,
ME=MEMORY). If the letter M is entered, “MONITEUR” uses the first command in table which
starts with the letter M.

Additional terminal keyboard functions are as follows:

(CTRL) A Exit assembler
(CTRL) H Backspace
(CTRL) J Line feed (LF)
(CTRL) W Wait/freeze screen. Execution is restarted by any terminal keyboard key.
(CTRL) X Abort/cancel command
(RETURN) Enter command/repeat last command

NOTES:

- When using the control key for a specialized command such as “CTRL A”, the “CTRL” key is
depressed and held, then the key “A” is depressed. Both keys are then released.

- Command line input examples in this chapter are amplified with the following:

• Command line input is entered when (RETURN) key is depressed.

• Typical example of this explanation is as follows:

>MD F000 F100

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 22 http://www.micronator.com

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 23

TABLE: 2 Monitor Program Commands

COMMAND DESCRIPTION

ASM [<address>] Assembler/disassembler
ASSEM (same as ASM)
BF <addr1> <addr2> <data> Block fill memory with data
BR [-] [<address>]... Breakpoint set
BREAK (same as BR)
CALL [<address>] Execute subroutine
COPY (same as MOVE)
DUMP (same as MD)
FILL (same as BF)
G [<address>] Execute program
GO (same as G)
HELP Display monitor commands
MEMORY (same as MM)
MD [<addr1> [<addr2>]] Dump memory to terminal
MM [<address>] Memory modify
MOVE <addr1> <addr2> [<dest>] Move memory to new location
P Proceed/continue from breakpoint
PROCEED (same as P)
RD (same as RM)
READ (same as MOVE)
REGISTER (same as RM)
RM [p,x,y,a,b,c,s] Register modify/display user registers
STOPAT <address> Stop at address
T [<n>] Trace $1-$FF instructions
TRACE (same as T)
? (same as HELP)
[<address>]/ (same as MM [<address>])

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 24 http://www.micronator.com

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 25

ASM Assembler/disassembler ASM

3.6.1 Assembler/disassembler

ASM [<address>]

< address > is the starting address for the assembler operation.

Assembler operation defaults to internal RAM if no address is given.

The assembler/disassembler is an interactive assembler/editor. Each source line is converted
into the proper machine language code and is stored in memory overwriting previous data on a line-
by-line basis at the time of the entry. In order to display an instruction, the machine code is disassem-
bled and the instruction mnemonic and operands are displayed. All valid opcodes are converted to
assembly language mnemonics. All invalid opcodes are displayed on the PC screen as “ILLOP”.

The syntax rules for the assembler are as follows:

a. All numerical values are assumed to be hexadecimal. Therefore no base designators
(e.g., $ = hex, % = binary, etc.) are allowed.

b. Operands must be separated by one or more space or tab characters.

c. Any characters after a valid mnemonic and associated operands are assumed to be
comments and are ignored.

Addressing mode are designated as follows:

a. Immediate addressing is designated by preceding the address with a # sign.

b. Indexed addressing is designated by a comma. The comma must be preceded by a one
byte relative offset (even if the offset is 00), and the comma must be followed by an X
or Y designating which index register should be use (e.g., LDAA 0,X)

c. Direct and extended addressing is specified by the length of the address operand (1 or
2 digits specifies direct, 3 or 4 digits specified extended). Extended addressing can be
forced by padding the address operand with leading zeros

d. Relative offsets for branch instructions are computed by the assembler. Therefore the
valid operand for any branch instructions is the branch-if-true address, not the relative
offset.

When a new source line is assembled, the assembler overwrites what was previously in memory. If no
source line is submitted, or if there is an error in the source line, then the contents of memory remain
unchanged. Four instruction pairs have the same opcode, so disassembly will display the following
mnemonics:

• Arithmetic Shift Left (ASL) / Logical Shift Left (LSL) displays as ASL
• Arithmetic Shift Left Double (ASLD) / Logical Shift Double (LSDL) displays as

LSLD

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 26 http://www.micronator.com

• Branch if Carry Clear (BCC) / Branch if Higher or Same (BHS) displays as BCC
• Branch if Carry Set (BCS) / Branch if Lower (BLO) displays as BCS

It is possible for the assembler to assemble in the complete memory
map even if it is in the external EEPROM because it uses WRITE
subroutine to put the assembled code in memory.

Assembler/disassembler subcommands are as follows. If the assembler detects an error in the
new source line, the assembler will output an error message and then re-open the same address loca-
tion.

/ , = Assemble the current line and then disassemble the same address location.

^ , - Assemble the current line and then disassemble the previous sequential address
location.

(CTRL) J , + Assemble the current line. If there isn’t a new line to assemble, then disassem-
ble the next sequential address location. Otherwise, disassemble the next
opcode address.

RETURN Disassemble next opcode.

(CTRL) A , . Exit the assembler mode of operation.

EXAMPLES DESCRIPTION

>ASM FB00

FB00 STX $FFFF >LDAA #55 Immediate mode addressing, require
86 55 # before operand.
FB02 STX $FFFF >STAA C0 Direct mode addressing.
97 C0
FB04 STX $FFFF >LDS 0,X Index mode, if offset = 0 (,X) will
AE 00 not be accepted.
FB06 STX $FFFF >BRA C500 Branch out of range message.

Branch out of range
FB06 STX $FFFF >BRA FB50 Branch offsets calculated automatic-
20 48 ally, address required as branch opr
FB08 RTS >(CTRL)A Assembler operation terminated.
>

NOTE:

In the above example memory locations $FB00-$FB08 previously contain $FF data
which disassembles to STX $FFFF.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 27

BF Block Fill BF

3.6.2 Block Fill

BF <address 1> <address 2> <data>

<address 1> Lower limit for fill operation.

<address 2> Upper limit for fill operation.

<data> Fill pattern hexadecimal value.

The BF command allows the user to repeat a specific pattern throughout a determined user
memory range in RAM or EEPROM.

EXAMPLES DESCRIPTION

>BF FB00 FBFF FF Fill each byte of memory from $FB00
to $FBFF with data pattern $FF.

>BF FC00 FC00 0 Set location $FC00 to 0.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 28 http://www.micronator.com

BR Breakpoint Set BR

3.6.3 Breakpoint Set

BR [-] [<address>]

[-] by itself Removes (clears) all breakpoints.

[-] preceding [<address>] Removes individual or multiple addresses from breakpoint
 table

The BR command sets the address into the breakpoint address table. During program execu-
tion, a halt occurs to the program execution immediately preceding the execution of any instruction
address in the breakpoint table. A maximum of 4 breakpoints may be set. After setting the breakpoint,
the current breakpoint addresses, if any, are displayed. Whenever the G, CALL, or P commands are
invoked, the monitor program inserts breakpoints into the user code at the address specified in the
breakpoint table.

Breakpoints are accomplished by the placement of a Software Interrupt (SWI) at each address
specified in the breakpoint table. The SWI service routine saves and displays the internal machine
state, then restores the original opcodes at the breakpoint locations before returning control back to
the monitor program.

Normally SWI opcodes cannot be executed or breakpointed in user code because the monitor
program uses the SWI vector.

However the user can put his own vector at the SWI vector address ($FFF6-$FFF7) using the
WRITE command as described in section 5.2.5 on page 49 or use the indirect RAM SWI vector
address ($7FFD-$7FFF). But remember to put the original vectors back because “MONITEUR” will
not work properly if the proper indirect vectors are not properly initialized.

One way to avoid confusion after the user has manipulated the SWI vectors is to re-download
“MONITEUR”.

SWI opcodes can be put anywhere in the memory map (RAM or external EEPROM).

COMMAND DESCRIPTION

BR Display all current breakpoints.

BR <address> Set breakpoint.

BR <addr1> <addr2> ... Set several breakpoints.

BR - Remove all breakpoints.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 29

BR - <addr1> <addr2> ... Remove <addr1> and add <addr2>.

BR <addr1> - <addr2> ... Add <addr1>, clear all entries, then add <addr2>.

BR <addr1> - <addr2> ... Add <addr1>, then remove <addr2>.

>BR FB03 Set breakpoint at address location
$FB03.

FB03 0000 0000 0000
>
>BR FB03 FB05 FB07 FB09 Sets four breakpoints. Breakpoints

at same address will result in only
FB03 FB05 FB07 FB09 one breakpoint being set.

>BR Display all current breakpoints.

FB03 FB05 FB07 FB09

>BR -FB09 Remove breakpoint at address $FB09.

FB03 FB05 FB07 0000

>BR - FB09 Clear breakpoint table & add $FB09.

FB09 0000 0000 0000

>BR - Remove all breakpoints.

0000 0000 0000 0000

>BR E000 E003 E005 E007 E009 Maximum of 4 breakpoints can be set.

Full Buffer full message.
E000 E003 E005 E007
>

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 30 http://www.micronator.com

CALL Call CALL

3.6.4 CALL

CALL [<address>]

[<address>] Address is the starting address where user subroutine begins.

The CALL command allows the user to execute a user subroutine program. Execution starts at
the current program counter (PC) address location, unless starting address is specified. Two extra
bytes are placed onto the stack before “MONITEUR” calls the subroutine so that the first unmatched
return from subroutine (RTS) encountered will return control back to the monitor program. Thus any
user subroutine can be called and executed via the monitor program. Program execution continues
until an unmatched RTS is encountered, a breakpoint is encountered, or the MicroNator System reset
switch is activated (pressed).

EXAMPLE PROGRAM FOR: CALL, G, P, and STOPAT

>ASM FB00

FB00 STX $FFFF >LDAA #44
86 44
FB02 STX $FFFF >STAA 0040
B7 00 40
FB05 STX $FFFF >NOP
01
FB06 STX $FFFF >NOP
01
FB07 STX $FFFF >NOP
01
FB08 STX $FFFF >RTS
39
FB09 STX $FFFF >(CTRL)A
>

EXAMPLE DESCRIPTION

>CALL FB00 Execute program subroutine.

P-FB00 Y-FB18 X-0818 A-44 B-BE C-D0 S-005E
>

Displays register status at time
RTS is encountered (except P register
contains original call address or a
breakpoint address if encountered).

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 31

G Go G

3.6.5 GO

GO [<address>]

[<address>] Address is the starting address where program execution is to begin.

The G command allows the user to initiate user program execution (free run in real time). The
user may optionally specify a starting address where execution is to begin. Execution starts at the cur-
rent program counter (PC) address location, unless a starting address is specified. Program execution
continues until a breakpoint is encountered, or the MicroNator System reset switch is activated
(pressed).

NOTE:
Refer to example program shown in section 3.6.4 and insert breakpoints at loca-

tions $FB05 and $FB07 for the following G command example.

>BR FB05 FB07 Insert breakpoints.

FB05 FB07 0000 0000 Display of breakpoint table.

>G FB00 Begin program execution at PC
address location $FB00.

P-FB05 Y-FB18 X-0818 A-44 B-BE C-D0 S-005E
>

Breakpoint encountered at $FB05.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 32 http://www.micronator.com

HELP Help HELP

3.6.6 HELP

The HELP command enables the user available MicroNator System command information to
be displayed on the terminal CRT for quick reference purposes.

At 19 200, with some PC, there might be some characters mis-aligned on the display when
dumping (MD) a long array of memory but it does not affect the content of the memory nor the down-
loading of programs as there is communication error recovery in the downloading procedure.

EXAMPLE

>HELP

ASM [<addr>] => Line assembler/disassembler.
/ , = : Do same address.
^ , - : Do previous address.
CTRL-J , + : Do next address.
RETURN : Do next opcode.
CTRL-A , . : Quit.

MM [<addr>] : Memory modify.
/ , = : Open same address.
CTRL-H , ^ , - : Open previous address.
CTRL-J , + , space : Open next address.
<addr>O : Compute offset to <addr>.
RETURN : Quit.

****** SPACE for more OTHER KEY to exit ******

BF <addr1> <addr2> [<data>] =>Block fill.
BR [-][<addr>] => Set up breakpoint table.
CALL [<addr>] => Call user subroutine.
G [<addr>] => Execute user code.
MD [<addr1> [<addr2>]] => Memory dump.
MOVE <s1> <s2> [<d>] => Block move.
P => Proceed/continue execution.
RM [P, Y, X, A, B, C, or S] => Register modify.
T [<n>] => Trace n instructions.
STOPAT <addr> => Trace instructions until <addr>.

CTRL-H => Backspace.

CTRL-W => Wait for any key.

CTRL-X => Abort/cancel command.

RETURN => Repeat last command.

>

FIRST
SCREEN

SECOND
SCREEN

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 33

MD Memory Display MD

3.6.7 MEMORY DISPLAY

MD [<address 1> [<address 2>]]

<address 1> Memory starting address (optional).

[<address 2> Memory ending address (optional).

The MD command allows the user to display a block of user memory beginning at address 1
and continuing to address 2. If address 2 is not entered, 9 lines of 16 bytes are displayed beginning at
address 1. If address 1 is greater than address 2, the display will default to the first address. If no
addresses are specified, 9 lines of 16 bytes are displayed near the last memory location accessed.

Each memory display line consists of a four digits hexadecimal address (applicable to the
memory location displayed), followed by 16 two digits hexadecimal values (contents of the sixteen
memory locations), followed by the ASCII equivalents (if applicable) of the 16 memory locations.
Since not all 8-bit values correspond to a displayable ASCII character, some of the character positions
at the end of a line may be blank.

At 19 200, with some PC, there might be some characters mis-aligned on the display when
dumping (MD) a long array of memory but it does not affect the content of the memory nor the down-
loading of programs as there is communication error recovery in the downloading procedure.

EXAMPLES

>MD E7D0

E7D0 20 8A 03 97 20 86 08 97 0B 39 CE E7 E1 BD E3 02 9
E7E0 39 0D 41 53 4D 20 5B 3C 61 64 64 72 3E 5D 20 20 9 ASM [<addr>]
E7F0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 3D =
E800 3E 20 4C 69 6E 65 20 61 73 73 65 6D 62 6C 65 72 > Line assembler
E810 2F 64 69 73 61 73 73 65 6D 62 6C 65 72 2E 0D 20 /disassembler.
E820 20 20 20 2F 20 20 20 20 20 20 20 20 20 3D 3E 20 / =>
E830 44 6F 20 73 61 6D 65 20 61 64 64 72 65 73 73 2E Do same address.
E840 20 20 20 20 20 5E 20 20 20 20 20 20 20 20 20 20 ^
E850 20 20 20 3D 3E 20 44 6F 20 70 72 65 76 69 6F 75 => Do previou
>MD FB30 FB20

FB30 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
>MD FB00 FB20

FB00 86 44 B7 00 40 01 01 01 39 FF FF FF FF FF FF FF D @ 9
FB10 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FB20 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 34 http://www.micronator.com

MM Memory Modify MM

3.6.8 MEMORY MODIFY

MM [<address>]

<address> Is the memory location at which to start display / modify.

The MM command allows the user to examine/modify contents in user memory at specified
locations in a interactive manner. The MM command will also erase any external EEPROM or inter-
nal RAM location, and will reprogram the location with the corresponding value (external EEPROM
locations treated as if standard RAM).

(CTRL)J or (SPACE BAR) or + Examine next location

(CTRL)H or ^ or - Examine/modify previous location.

/ or = Re-examine/modify same location.

(RETURN) Terminate MM operation.

<ADR> O Compute branch instruction relative offset.

If an attempt is made to change an invalid address, the invalid address message “WRITING
ERROR” is displayed on the terminal CRT. An invalid address is any memory location which cannot
be read back immediately after a change in order to verify that change. A good example is a location
in memory which have no memory installed. CONFIG is a special case refer to B.1 on page 71.

EXAMPLES DESCRIPTION

>MM FB80 Display memory location $FB80

FB80 FF 66/ Change data at $FB80 and re-examine
location.

FB80 66 55^ Change data at $FB80 and backup one
location.

FB7F AA AA Change data at $FB7F and terminate MM
operation.

>MM FB80 Display memory location.

FB3C FF FB8EO 51 Compute offset, result = $51.
FB3C FF

>MM 0040 Examine $0040 (internal RAM).

0040 44 04 25 97 3F D7 (RETURN)

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 35

Examine next location(s) using
(SPACE BAR) & ending with (RETURN).

>

>MM 1000 Examine $1000 (no memory installed).

1000 00 FF Trying to write $FF at $1000.

WRITING ERRO Error message since after writing,
> the monitor reads back and if data

read is different than data written
then the monitor display “WRITING
ERROR

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 36 http://www.micronator.com

MOVE Move MOVE

3.6.9 MOVE

MOVE < source start-address > < source end-address > [< dest-start >]

< source start-address > Memory source starting address.

< source end-address > Memory source ending address.

[< dest-start >] Destination starting address (optional).

The MOVE command allows the user to copy/move memory to new memory locations. If the
destination is not specified, the block of data residing from address 1 to address 2 will be moved up
one byte.

No message will be displayed on the CRT upon completion of the copy / move operation, only
the prompt is displayed.

Take note that it takes about 10 msec to program one byte of EEPROM.

EXAMPLES DESCRIPTION

>MOVE E000 E0FF F000 Move data from locations $E000-$E0FF
to locations $F000-$F0FF.

>

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 37

P Proceed / Continue P

3.6.10 PROCEED / CONTINUE

P

This command is used to proceed or continue program execution without having to remove
assigned breakpoints. This command is used to bypass assigned breakpoints in a program executed by
the G command.

NOTE:
Refer to example program shown in section 3.6.4 on page 30 for the following P
command. Breakpoint have been inserted at location $FB05 and $FB07 (refer to

example in section 3.6.3).

EXAMPLE DESCRIPTION

>BR To see the breakpoint table.

FB05 FB07 0000 0000 Breakpoints table.
>G FB00 Start execution at $FB00

P-FB05 Y-FB18 X-0818 A-44 B-BE C-D0 S-005E
Breakpoint encountered at $FB05.

>P Continue execution.

P-FB07 Y-FB18 X-0818 A-44 B-BE C-90 S-005E

> Breakpoint encountered at $FB07.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 38 http://www.micronator.com

RM Register Modify RM

3.6.11 REGISTER MODIFY

RM [p, y, x, a, b, c, s]

The RM command is used to modify the MCU program counter (P), Y index (Y), X index
(X), A accumulator (A), B accumulator (B), condition code register (C), and stack pointer (S) register
contents.

EXAMPLE DESCRIPTION

>RM Display P register contents.

P-FB07 Y-FB18 X-0818 A-44 B-BE C-90 S-005E

P-FB07 FB00 Modify P register contents.

>RM X Display X register contents.

P-FB00 Y-FB18 X-0818 A-44 B-BE C-90 S-005E

X-0818 00E0 Modify X register contents.

>RM Display P register contents.

P-FB00 Y-FB18 X-00E0 A-44 B-BE C-90 S-005E

P-FB00 (SPACE BAR) Display remaining registers.
Y-FB18 (SPACE BAR)
X-00E0 (SPACE BAR)
A-44 (SPACE BAR)
B-BE (SPACE BAR)
C-90 (SPACE BAR)
S-005E (SPACE BAR) (SPACE BAR)entered following stack
> pointer display will terminate RM com-

mand.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 39

STOPAT Stop at Address STOPAT

3.6.12 STOP AT

STOPAT <address>

<address> Is the specified user program counter (PC) stop address.

The STOPAT command causes a user program to be executed one instruction at a time until
the specified address is encountered. Execution begins with the current PC address and stop just
before execution of the instruction at the specified stop address. The STOPAT command should only
be used when the current value of the user PC register is known, (e.g., after a breakpoint is reached or
after an RD command is used to set the user PC).

Since the STOPAT command traces one instruction at a time with a hidden return to the mon-
itor after each user instruction, some user programs will appear to execute slowly.

The stop address specified in the STOPAT command must be the address of an opcode just as
breakpoints can only be set at opcode addresses.

NOTE:
Refer to example program shown in section 3.6.4 on page 30 for the following

STOPAT command example. The RD command was used prior to this example to
set the user PC register to $FB00.

EXAMPLE DESCRIPTION

>STOPAT FB08 Execute example program until $FB08
is reached.

P-FB08 Y-FB18 X-0818 A-44 B-BE C-90 S-005E
>

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 40 http://www.micronator.com

T Trace Trace

3.6.13 TRACE

Trace [<n>]

<n> N is the number (in hexadecimal, $1-$FF) of instructions to execute. A default value
 of 1 is used if <n> is not specified.

The T command allows the user to monitor program execution on an instruction-by-instruc-
tion basis. The user may optionally execute several instructions at a time by entering count value (up
to $FF). Execution starts at the current program counter (PC). Each event message line includes a dis-
assembly of the instruction that was traced and a register display showing the CPU state after the exe-
cution of the traced instruction. The trace command operates by setting the OC5 interrupt to time out
after the first cycle of the first user opcode fetched.

At 19 200, with some PC, there might be some characters mis-aligned on the display when
dumping (MD) a long array of memory but it does not affect the content of the memory nor the down-
loading of programs as there is communication error recovery in the downloading procedure.

NOTE:

The RM command was used to set the user PC register to $FB00 prior to starting
the following trace examples.

 EXAMPLE DESCRIPTION

>RM
P-FFFF Y-FFFF X-FFFF A-FF B-FF C-94 S-004E

P-FFFF FB00(SPACE) Init user PC register.
Y-FFFF (SPACE)
X-FFFF (SPACE)
A-FF 61 (RETURN) Init accumulator A.

>T 1
JMP $FB10 P-FB10 Y-FFFF X-FFFF A-61 B-FF C-94 S-004E
>T 2
PSHA P-FB11 Y-FFFF X-FFFF A-61 B-FF C-94 S-004D
PSHB P-FB12 Y-FFFF X-FFFF A-61 B-FF C-94 S-004C
>T 3
PSHX P-FB13 Y-FFFF X-FFFF A-61 B-FF C-94 S-004A
JSR $FB20 P-FB20 Y-FFFF X-FFFF A-61 B-FF C-94 S-0048
CMPA #$61 P-FB22 Y-FFFF X-FFFF A-61 B-FF C-94 S-0048
>T 4
BEQ $FB40 P-FB40 Y-FFFF X-FFFF A-61 B-FF C-94 S-0048
RTS P-FB16 Y-FFFF X-FFFF A-61 B-FF C-94 S-004A
LDX #$EFAE P-FB19 Y-FFFF X-EFAE A-61 B-FF C-98 S-004A
JSR $E500 P-E500 Y-FFFF X-EFAE A-61 B-FF C-98 S-0048
>

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 41

CHAPTER 4

HARDWARE DESCRIPTION

4.1 INTRODUCTION

This chapter provides an overall description of the MicroNator System hardware. The MicroNator
System schematic diagrams can also be referred to for the following descriptions.

4.2 GENERAL DESCRIPTION

Overall evaluation/debugging control of the MicroNator System is provided by the “MONITEUR”
program residing in the standard memory map in the EEPROM outside the CPU. The RS-232C termi-
nal I/O port interface circuitry provides communication and data transfer operations between the
MicroNator System and external terminal/host computer devices while the I/O port DB25 is used for
the external I/O connections.

4.3 POWER

The power supply is a wall-mounted one. The module plugs into the wall AC socket and the female
connector plugs into the connector of the MicroNator System. Refer to Figure: 2 on page 12.

The output of the wall-mounted power supply is about 7.5 Vdc, unregulated. Inside the MicroNator
the input power is protected with diode D1 in case the power is plugged the wrong way. It is filtered
with caps C9 and C10 then it is regulated to 5 Vdc with regulator U6 and filtered again with caps C11
and C12. The diode D2 is used in the case the power comes from the bus and is more than 5 Vdc.
Refer to Fig: 5 on page 57.

4.4 MICRO CONTROLLER

4.4.1 Software

The MCU configuration register “CONFIG $103F” is programmed such that the NOCOP bit is set
(COP system is disabled) and the EEON (Enable on-chip EEPROM) bit is reset (internal 512 bytes of
EEPROM is disabled and takes no space in the memory map). When the EEON bit is reset, MCU
internal ROM is disabled, and that memory space becomes internally unaccessible. This allowed the
external EEPROM memory to contain “MONITEUR”, the monitor program.

The control registers are located at $1000-$103F after RESET.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 42 http://www.micronator.com

The MicroNator System allows the user to use all the features of “MONITEUR” program, however it
should be noted that the monitor program uses part of the MCU external RAM locations $7F00-
$7FFF leaving the entire 256 bytes of internal RAM to the user (i.e., $0000-$00FF). When you are
using “MONITEUR” to debug your program, about 23.9 Kbytes of EEPROM is available. After your
program is debugged you can remove “MONITEUR” and you will have the complete (32 Kbytes) of
EEPROM available.

4.4.2 Mode / RS-232 Communication

The MicroNator System resident 68HC11A1 MCU device (U1) is factory configured for normal
expanded multiplexed mode of operation.

The normal expanded multiplexed mode is accomplished by applying +5 Vdc to the MCU MODA
and MODB pins during reset. Refer to Figure: 4 below.

The MicroNator System can be re configured for the special-bootstrap mode of operation without
additional circuitry. This special-bootstrap mode of operation is activated remotely through the RS-
232C communication channel. Refer to Figure: 3 on page 13 for the cable connection.

Lines from the PC and internal circuitry of U50 (PALCE22V10) are used to change and latch the
mode of the MicroNator System from expanded multiplexed standard mode of operation to special
bootstrap mode of operation and vice versa. The special bootstrap mode is one of the way used to
download program from the PC to the MicroNator System board.

If nothing is plugged in the DB9 of the MicroNator System the MCU will be in standard expanded
multiplexed mode of operation

4.4.3 Remote Reset through the RS-232 Communication from the PC

When the RESET* pin is LOW the MCU stop running just like any other MCU under reset. Lines
from the PC and internal circuitry of the PALCE22V10 are used to reset the MicroNator System.

If nothing is plugged in the DB9 of the MicroNator System the MCU will be in standard expanded
multiplexed mode of operation when its comes out of reset.

MODB MODA

Inputs
Mode description

1

1

0
0

0

1
0
1

Single Chip

Expanded
Special Bootstrap

Special Test

 Figure: 4 Mode Selection

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 43

4.4.4 Trace

The TRACE command uses the INTERRUPT generated by the OC5 on pin PA3. This is the reason
why the PA3 signal should be used with care on the I/O connector. The user should pay attention if
he wants to use the OC5 or PA3 and still be able to TRACE his program so not to interfere with the
TRACE command.

4.4.5 MEMORY

The MicroNator System map is a single map design reflecting the permanently resident 68HC11A1
device. The MicroNator System is configured for expanded-multiplexed mode of operation, but can
be configured by the PC for special boot-strap mode of operation. Refer to the M68HC11 Reference
Manual (M68HC11RM/AD REV2) for the specific memory map information on the modes of opera-
tion.

4.4.6 RAM

The amount of internal RAM available is 256 bytes and is situated in the lower part of the memory
map inside the CPU. The monitor uses none of it for its own variables. When the user is developing
his program and wants to use the monitor, he can use the entire internal 256 bytes and the entire exter-
nal RAM except $7F00 to $7FFF. After the program is developed, the user can remove the monitor
from the memory so he will be free to use all of the RAM available (internal & external).

4.4.7 EEPROM

The amount of EEPROM available is 32Kbytes and is situated in the higher part of the memory map
outside the CPU. The 512 bytes of EEPROM inside the CPU is still there and is disabled because of
memory conflict with the external EEPROM. The EEON bit (bit 0) of the CONFIG register is reset so
as to disable the 512 bytes of internal EEPROM.

If the user wants to write a byte in the external EEPROM, he just has to put the byte in the accumula-
tor A and the address to write to in the accumulator X, then call the WRITE subroutine. The address
of this subroutine is founded in TABLE: 3 on page 47.

For more information, please refer to the paragraph 5.2.5 on page 49 “Special EEPROM Writing
Routine”.

4.5 UCT BUS

Please refer to “UCT BUS CONNECTOR” on page 59 for a complete description of signals and
pinout. All of the signals necessary to implement a complete micro controller system are included on
this bus. If the user wants more expansion he can purchase an optional Wire Wrap board that plugs

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 44 http://www.micronator.com

directly into the CPU-BUS connector of the MCU. The board comes with all the necessary hardware
to secure the expansion board to the CPU board. The user in not restricted to only one expansion
board, he can adds as many expansion boards as he wants as long as he respect the loading of the pins.
Please refer to “EXPANSION BOARD” on page 65 for more details on expansion boards.

4.6 Serial I/O Communication

The MicroNator System uses a +5 volt RS-232C driver/receiver device (U5) to communicate to a PC
via the MicroNator System DB9 I/O port. The terminal I/O port baud rate defaults to 19,200 baud.
The baud rate can be changed by software by programming the MCU BAUD register ($102B) or
changing the memory location $FF66 as explained in section 3.2 on page 15.

The terminal I/O port is also used as a host computer communication port for downloading Motorola
S-records via the special-bootstrap mode of operation, with the help of U50 (PALCE) and a special
communication program residing in the host computer (BS_EEPRM.BIN).

Figure: 3 on page 13 show the standard cable used to communicate between the PC and MicroNator
System. The DB25 to be inserted into the communication port of the PC is a female connector and the
one to be inserted into the MicroNator System is also a DB9 female. The DB9 on the MicroNator
System is a male connector.

4.7 I/O Port Interface

Section 6.6 describes the MCU I/O port connector. The user is able to connect I/O wires to this con-
nector. All of the analog pins have a 1K ohms resistor in serie to limit the current flowing into the
MCU analog pin. For more explanations about those serie resistors the user is referred to section 12.3
A/D PIN CONNECTION CONSIDERATIONS on page 12-16 in Motorola HC11 reference manual
(# M68HC11M/AD REV 2) included with the MicroNator System.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 45

CHAPTER 5

MONITOR PROGRAM

5.1 INTRODUCTION

This chapter provides the overall description of the monitor program. This description will enable the
user to understand the basic organization of the program.

5.2 PROGRAM DESCRIPTION

The monitor program supplied with the MicroNator System is called “MONITEUR”. This monitor is
the standard Motorola BUFFALO monitor modified by RF-232. The program communicates via the
MCU serial communication interface (SCI). “MONITEUR” is contained in the distribution diskette
and it is also in the external EEPROM of the MicroNator System.

“MONITEUR” consist of six parts as follows:

a. Initialization
b. Command interpreter
c. I/O routines
d. Utility subroutines
e. Command table
f. Special EEPROM writing routines

5.2.1 Initialization

This part of “MONITEUR” contains all of the reset initialization code. In this section, external RAM
locations and the I/O channel for the communication with the PC are set up. The baud rate is initialize
to 19200 bps, 8 bits, 1 stop, no parity.

5.2.2 Command interpreter

The next section of “MONITEUR” is the command interpreter. American Standard Code for Infor-
mation Interchange (ASCII) characters are read from the PC into the input buffer until a carriage
return or a slash (/) is received.

The command field is then parsed out of the input buffer and placed into the command buffer. A table
of commands is then searched and if a match is found, the corresponding command module is called
as a subroutine.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 46 http://www.micronator.com

All commands return control back to the command interpreter upon completion of the operation.

5.2.3 I/O Routines

The I/O section of “MONITEUR” consists of a set of three supervisor routines. The supervisor rou-
tines consists of an initialization routine INIT, an input routine INPUT, and an output routine OUT-
PUT.

All I/O routines use the SCI for communication with the PC. There are no IODEV, EXTDEV nor
HOSTDEV.

The INIT routine sets up a serial transmission format of 8 data bits, one stop bit, and no parity. The
SCI has a baud rate of 19200 bps for a 4.9152 MHz crystal. A different baud rate can be achieved by
modifying the BAUD register at address location $102B (refer to MCU data sheet, SCI baud rate
selection). The baud rate can also be modify by changing the content of memory location $FF66 as
explained in section 3.2 on page 15.

The INPUT routine reads from the SCI. If a character is received, the character is returned to accumu-
lator A. If no character is received, a logic zero (0) is returned to accumulator A. This routine does not
wait for a character to be received before returning (that function is performed by INCHAR utility
subroutine).

The output routine takes the ASCII character in accumulator A and writes the character to the SCI.
This routine waits until the character begins transmitting before returning.

5.2.4 Utility Subroutines

Several subroutines exist that are available for performing I/O tasks. Those subroutines are in a jump
table set up in EEPROM directly before the interrupt vectors. To use these subroutines, execute a
jump to subroutine (JSR) command to the appropriate entry in the jump table. By default, all I/O per-
formed with these routines are sent to the SCI. The utility subroutines available to the user are listed
in TABLE: 3 below. Those routine do the same thing and are at the same place as those from the
BUFFALO monitor. So they are exactly compatible with the programs developed with the EVB of
Motorola. The only exception is VECTINIT which is at $FF79 instead of $FFD0 and “MONITEUR”
has only 5 pseudo-vectors in RAM. Please refer to TABLE: 4 for those pseudo-vectors.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 47

TABLE: 3 Utility Parameters and Subroutines Jump Table

SPECIAL PARAMETERS & SUBROUTINES of “MONITEUR”

ADR ROUTINE DESCRIPTION

$FF65 RTCXTAL Contains the variable to initialize the Real Time Clock
$85 => 4.194304 MHz $95 => 2.097152 MHz
$A5 => 1.048576 MHz $B5 => 32.768 KHz (default)

$FF66 BBAUD Contains the variable to initialize the SCI
$02=19,200 $03=9600 $04=4800 $05=2400
Default is $02.

$FF67 WRCH Same as OUTA, endless loop until SCI TX ready.

$FF6A JMP RTCINIT Initialize the PORTD and the SPI system for communication with the
RTC.

$FF6D JMP SETDFLT Subroutine to set up default time of: 12:00:00 Mon 01/01/1995 and
alarm set to same time but turned off. RTC turned on.

$FF70 JMP SETTIME Set time sec/min/hr as pointed to by Y-register.

$FF73 JMP DISPTIM Display current time to the PC (alternate entry to do a CR, LF first)

$FF76 JMP WRITE Write the content of accumulator A to the address in X. (Operation
applicable to all locations in internal and external RAM or external
EEPROM except for CONFIG $103F).

$FF79 JMP VECINIT Used during initialization to pre-set 5 indirect interrupt vectors in
RAM (SCI, SPI, TOC5, XIRQ and SWI) located @ $7FF1 to $7FFF.
This routine or a similar routine should be included in a user program
which is invoked by the jump to START feature of “MONI-
TEUR”.This is the only routine that is not compatible with BUF-
FALO as MicroNator System uses only 5 pseudo-vectors.

ROUTINES of “MONITEUR” COMPATIBLE with BUFFALO 3.xx

$FF7C JMP WARMST Go to the “>” prompt point (skip “MONITEUR” message)

$FF7F JMP BPCLR Clear breakpoint table.

$FF82 JMP RPRINT Display user’s registers.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 48 http://www.micronator.com

$FF85 JMP HEXBIN Convert ASCII character in A register to 4-bit binary number. Shift
binary number into SHIFTREG from the right. SHIFTREG is a 2-
byte (4 hexadecimal digits) buffer. If A register is not hexadecimal,
location TMP1 is incremented and SHIFTREG is unchanged.

$FF88 JMP BUFFAR Read 4-digit hexadecimal argument from input buffer to SHIFTREG.

$FF8B JMP TERMAR Read 4-digit hexadecimal argument from SCI device to SHIFTREG.

$FF8E JMP CHGBYT Write value (if any) from SHIFTREG + 1 to memory location
pointed to by X. (Operation applicable to all locations (except for
CONFIG at $003F) in internal RAM or external EEPROM).

$FF91 JMP READBU Read next character from INBUFF.

$FF94 JMP INCBUF Increment pointer into input buffer.

$FF97 JMP DECBUF Decrement pointer into input buffer.

$FF9A JMP WSKIP Read input buffer until non-white space character found.

$FF9D JMP CHKABR Monitor input for (CTRL)X or (CTRL)W requests.

$FFA0 JMP UPCASE If character in accumulator A is lower case alpha, convert to upper
case.

$FFA3 JMP WCHEK Test character in accumulator A and return with Z bit set if character
is white space (space, comma, tab).

$FFA6 JMP DCHEK Test character in accumulator A and return with Z bit set if character
is delimiter (carriage return or white space).

$FFA9 JMP INIT Initialize I/O device (SCI).

$FFAC JMP INPUT Read I/O device (SCI).

$FFAF JMP OUTPUT Write I/O device (SCI).

$FFB2 JMP OUTLHL Convert left nibble of accumulator A contents to ASCII and output to
terminal port (SCI).

$FFB5 JMP OUTRHL Convert right nibble of accumulator A contents to ASCII and output
to terminal port (SCI).

$FFB8 JMP OUTA Output accumulator A ASCII character.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 49

$FFBB JMP OUT1BY Convert binary byte at address in index register X to two ASCII char-
acters and output. Returns address in index register X pointing to
next byte.

$FFBE JMP OUT1BS Convert binary byte at address in index register X to two ASCII char-
acters and output followed by a space. Returns address in index reg-
ister X pointing to next byte.

$FFC1 JMP OUT2BS Convert two consecutive binary bytes starting at address in index
register X to four ASCII characters and output followed by a space.
Returns address in index register X pointing to next byte.

$FFC4 JMP OUTCRL Output ASCII carriage return followed by a line feed.

$FFC7 JMP OUTSTR Output string of ASCII bytes pointed to by address in index register
X until character is end of transmission ($04).

$FFCA JMP OUTST0 Same as OUTSTR except leading carriage return and line feed is
skipped.

$FFCD JMP INCHAR Input ASCII character to accumulator A and echo back. This routine
loops until character is actually received.

__

When addressing “MONITEUR” utility routines, always reference the routines by the applicable
address ($FF67 through $FFCD) in the JMP table rather then the actual address in the “MONITEUR”
program. Jump table addresses remain the same when a new version of “MONITEUR” is developed
even though the actual addresses of the routine may change. Programs that reference routines by the
jump table addresses are not required to be changed to operate on revised versions of the “MONI-
TEUR” program.

5.2.5 Special EEPROM Writing Routine

The only disadvantage of EEPROM is that their I/O pins turn into high impedance state after the CPU
has finished writing data into them.

If the CPU tries to read back the data right away after writing, it will read the complement of the last
byte written into the EEPROM. The state of high impedance lasts from 5 to 10 msec then the
EEPROM returns to its normal operating state. The CPU can read it as a normal memory device only
after such a delay

If someone wants to write into an EEPROM, he has to find out one of the main parameter of the
device which is the page size. The page size is the number of bytes you can write into the EEPROM

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 50 http://www.micronator.com

at any one time. It can be anything from 8 to 64 bytes to the entire EEPROM.

The next parameter to find out is how much time, in micro-seconds after the WRITE pin of the
EEPROM goes inactive, the CPU has to write another byte before the EEPROM goes into high
impedance. This amount of time ranges from 10 usec to 100 usec.

Also if the CPU writes more than one byte, the user must make sure he does not cross the page bound-
ary while writing the string.

Normally a programmer writes the string into the EEPROM taking care of all the requirements of the
device. Then the CPU jumps to a time-delay subroutine stored into another memory device. After
looping through the delay he returns to the calling routine and he checks the bytes written. If every-
thing is verified satisfactory, he continues his program.

Another way for the verification is to write one byte at a time to the EEPROM. After writing, you
continuously read back the device bit7 (EEPROM busy flag). This read cycle can be at any address of
the EEPROM just written into. If the bit7 is HIGH (1) the device is still busy writing the byte. If the
bit7 is LOW (0) the device has finished writing and the user can check back the written byte. This
sequence has the advantage of taking less time because the EEPROM becomes available as soon as it
detects the written bytes is actually well programmed.

This verify-flag-after-writing program takes more bytes to code than just a write-then-delay program.

All the 32Kbytes EEPROM are guaranteed for 100,000 writes but they will go far beyond that limit
(300,000 to 400,00 times).

The MicroNator System wants to be one taking the least amount of silicon so as to keep the price of
the system as low as possible. Since there is only one EEPROM in the system the monitor has to take
another way to write into it because it can not loop through the delay in the EEPROM for the memory
device is in high impedance state.

The only other kind of memory available to the monitor is the internal RAM. The external one might
not be present in the user design. “MONITEUR” takes the delay subroutine stored in itself (refer to
5.2.5.1 below) and uses the available RAM to store it into the STACK; jumps to the routine in the
STACK; writes the byte into the EEPROM; loops through the delay; returns to the WRITE routine in
“MONITEUR”; re-ajusts the STACK; cheks if the byte was written correctly, display an error mes-
sage if it was not; and finally return from subroutine. If there are many bytes to be written the pro-
gram loops until end of string.

Downloading a program is done differently through the bootstrap mode of operation however it uses
almost the same idea.

If the user has to write into the external EEPROM, it is only necessary to incorporate the WRITE sub-
routine into it. Make sure the STACK has enough space to contain the delay subroutine and stacking

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 51

information which, in all, take 19 bytes of the STACK.

Note
Please remember that those routines are copyrighted and that you need a licence if

you want to incorporate them into you program.

5.2.5.1 Part of Write.asm (Copyright 1990 by Michel-André Robillard of T.Sc.A.)

Before executing those routines, the byte to be written is stored into “A” and the address into “X”.

Those routines take 19 bytes of stack.

The part that verifies if the address is “CONFIG” and the one that displays error messages are not
included in this assembler program.

NOTE

The addresses below may change with different version of “MONITEUR”.

(COPYRIGHT 1990 by Michel-André Robillard of RF-232)

4478 ********************
4428 *
4429 ***************
4430 * - WRITE() This routine is used to write the content
4431 * of A to the address in X.
4432 * - If the user try to write to CONFIG
4433 * an error message is displayed.
4434 * - All registers are saved.
4435 ***************
4436 *
...
4503 fd89 18 3c WRITE_OK PSHY
4504 fd8b 37 PSHB
4505 fd8c 3c PSHX
4506 fd8d 36 PSHA
4507
4508 fd8e c6 39 LDAB #$39
4509 fd90 37 PSHB
4510 fd91 c6 fd LDAB #$FD
4511 fd93 37 PSHB
4512 fd94 c6 26 LDAB #$26
4513 fd96 37 PSHB
4514 fd97 c6 09 LDAB #$09
4515 fd99 37 PSHB
4516 fd9a c6 00 LDAB #$00
4517 fd9c 37 PSHB
4518 fd9d c6 08 LDAB #$08

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 52 http://www.micronator.com

4519 fd9f 37 PSHB
4520 fda0 c6 ce LDAB #$CE
4521 fda2 37 PSHB
4522 fda3 c6 00 LDAB #$00
4523 fda5 37 PSHB
4524 fda6 c6 a7 LDAB #$A7
4525 fda8 37 PSHB
4526
4527 fda9 18 ce fd b8 LDY #WR_RTS
4528 fdad 18 3c PSHY
4529 fdaf 18 30 TSY
4530 fdb1 18 08 INY
4531 fdb3 18 08 INY
4532 fdb5 18 3c PSHY
4533 fdb7 39 RTS
4534
4535 fdb8 38 WR_RTS PULX
4536 fdb9 38 PULX
4537 fdba 38 PULX
4538 fdbb 38 PULX
4539 fdbc 32 PULA
4540 fdbd 32 PULA
4541 fdbe 38 PULX
4542 fdbf 33 PULB
4543 fdc0 18 38 PULY
4544 fdc2 a1 00 CMPA 0,X
4545 fdc4 27 0a BEQ END_END
4546 fdc6 3c PSHX
4547 fdc7 36 PSHA
4548 fdc8 ce fd d1 LDX #MSG_ERR
4549 fdcb bd ee 2d JSR OUTSTRG
4550 fdce 32 PULA
4551 fdcf 38 PULX
4552 fdd0 39 END_END RTS

5.3 WRITING INTERRUPT VECTORS

The user looks upon the interrupt vectors residing in EEPROM as ordinary bytes which are accessible
as follows:

Writing the high byte of the vector subroutine address:

• Load the high byte of the subroutine’s address into the accumulator A.
• Load the vector’s high byte address in the index register X.
• Call the WRITE subroutine.

Writing the low byte of the vector subroutine address:

• Load the low byte of the subroutine’s address into the accumulator A.
• Load the vector’s low byte address in the index register X.
• Call the WRITE subroutine.

...That’s all there is to it...

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 53

Since EEPROM are guaranteed to be written only 100 000 times and subroutines like TRACE, STO-
PAT, ASM etc. modify often the addresses of the vectors then it is better to put the often modified
vectors into RAM instead of EEPROM.

It is for this reason that there are 5 indirect interrupt vectors which are assigned a three bytes field
residing in the upper MicroNator System external RAM locations near $7FFF. Each real interrupt
vector in EEPROM points to one of those three bytes field which is used as a jump table to the actual
interrupt service subroutine. TABLE: 4 below lists those indirect interrupt vectors and associated
three byte fields.

TABLE: 4 Interrupt Pseudo-Vector Jump Table

INTERRUPT VECTOR FIELD

Serial Communication Interface (SCI) $7FF1-$7FF3
Serial Peripheral Interface (SPI) $7FF4-$7FF6
Timer Output Compare 5 (TOC5) $7FF7-$7FF9
XIRQ $7FFA-$7FFC
Software Interrupt (SWI) $7FFD-$7FFF

To use vectors specified in TABLE: 4 above , the user inserts a jump extended opcode ($7E) and an
address in the three bytes field of the required indirect interrupt vector.

EXAMPLE:

For the SCI vector, the following is performed:

1) Place $7E (extended JMP) at location $7FF1.

2) Place SCI interrupt subroutine address at location $7FF2 and $7FF3

In this example the SCI interrupt subroutine starts at $FC00:

$ADDR OC OP OP label opcod oper *comment

$FB00 86 7E S_INIT LDAA #$7E *JMP instruction
$FB02 B7 7F F1 STAA $7FF1 *Store it in $7FF1
$FB05 CE FC 00 LDX #SCI_AD *Get SCI Routine address
$FB08 FF 7F F2 STX $7FF2 *Store address @ $7FF2/3
...
...
$FC00 BD FF AC SCI_AD JSR INPUT *Start of SCI Interrupt
... *located in vector table

Of course the user may write directly to the real vector address with the WRITE subroutine as

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 54 http://www.micronator.com

explained above in paragraph 5.2.5 on page 49 and in paragraph 5.3 on page 52.

During initialization “MONITEUR” checks the first byte of each of the five locations. If a jump
opcode ($7E) is not found, “MONITEUR” will install a jump to a routine called STOPIT. This
assures there will be no uninitialized interrupt vectors which would cause undesirable operation dur-
ing power up and power down. If an interrupt is accidentally encountered, the STOPIT routine will
force a STOP instruction sequence to be executed.

NOTE
The STOPIT routine is an endless loop. Only a reset can take the CPU out from that

routine as it is in STOP mode and the XIRQ is also pointing to STOPIT.

A user may replace any of the JMP STOPIT instructions with a JMP to a user written interrupt service
routine. If a hardware reset is issued via the RESET switch (SW1), “MONITEUR” will not overwrite
these user jump instructions so they need not be re-initialized after every reset.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 55

TABLE: 5 Vector Table

ffd0 ORG $FFD0

 *** Vectors ***

*Do not change MONITEUR (used when downloading to adjust RESET vector) for more
*information see section 3.2.1 on page 16
*
ffd0 VERSION EQU *
ffd0 04 00 FDB $0400 *Version number of MONITEUR
ffd2 eb 12 FDB MONITEUR *Used for downloading
ffd4 00 00 FDB 0
ffd6 7f f1 VSCI FDB JSCI
ffd8 7f f4 VSPI FDB JSPI
ffda ed 98 VPAIE FDB STOPIT
ffdc ed 98 VPAO FDB STOPIT
ffde ed 98 VTOF FDB STOPIT
ffe0 7f f7 VTOC5 FDB JTOC5
ffe2 ed 98 VTOC4 FDB STOPIT
ffe4 ed 98 VTOC3 FDB STOPIT
ffe6 ed 98 VTOC2 FDB STOPIT
ffe8 ed 98 VTOC1 FDB STOPIT
ffea ed 98 VTIC3 FDB STOPIT
ffec ed 98 VTIC2 FDB STOPIT
ffee ed 98 VTIC1 FDB STOPIT
fff0 ed 98 VRTI FDB STOPIT
fff2 ed 98 VIRQ FDB STOPIT
fff4 7f fa VXIRQ FDB JXIRQ
fff6 7f fd VSWI FDB JSWI
fff8 ed 98 VILLOP FDB STOPIT
fffa ed 98 VCOP FDB STOPIT
fffc ed 98 VCLM FDB STOPIT
fffe eb 12 VRST FDB MONITEUR

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 56 http://www.micronator.com

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 57

CHAPTER 6

SUPPORT INFORMATION

6.1 INTRODUCTION

This chapter provides the connector signal descriptions for the MicroNator System.

6.2 CONNECTOR SIGNAL DESCRIPTIONS

Connector P1 (VIN) interconnects an external power supply to the MicroNator System. Connector J2
(Serial Connector) is provided to facilitate interconnection to a personnel computer (PC). Connector
J3 (BUS CONNECTOR) is the standard bus “proprietary of RF-232” for expansion I/O board. J5 is
the MCU I/O interface connector used to connect all MCU I/O pins to the outside world.

Pins assignments for the above connectors are identified in following tables. Connector signals are
identified by pin number, signal mnemonic, I/O type, signal name and a brief description.

6.3 POWER INPUT CONNECTOR

TABLE: 6 Input Power Connector (P1) Pin Assignments

PIN SIGNAL
NUMBER MNEMONIC I/O SIGNAL NAME AND DESCRIPTION

1 GND - MicroNator System Ground.

2 VIN I +VDC input to the 5 volts on-board regulator
used by the MicroNator System logic circuits.

NOTE:
VIN is also on bus connector J3 pin 63.

2
1

P1 SW2

1

2
3

VIN
C9D1 C10

TOREG

Fig: 5 Input Power “VIN”

47uF1N4001TR 0.1uF

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 58 http://www.micronator.com

6.4 RS-232C CONNECTOR

TABLE: 7 Serial I/O communication Port (J2)

PIN SIGNAL
NUMBER MNEMONIC I/O SIGNAL NAME AND DESCRIPTION

1 - Not connected.

2 PC-TX I PC TRANSMIT-DATA - Serial data input line
to MicroNator.

3 PC-RX O PC RECEIVE-DATA - Serial data output line
from MicroNator.

4 - Not connected

5 PC-SGND - Signal Ground.

6 DTR* I Standard RS-232C Data Terminal Ready.

7 - Not connected.

8 RTS* I Standard RS-232C Request To Send.

9 - Not connected.

Fig: 6 shows the schematic and the standard cable used for the communication between the PC and
the MicroNator System. The DB25 female plugs into the COM port of the PC and the DB9 male into
J2 of the MicroNator System.

PC-SGND

RTS*
PC-RX

PC-TX
DTR*

J2

 Fig: 6 Serial Connector & Signals

5
9
4
8
3
7
2
6
1

PC COM PORT MicroNator
J2 Connector

FEMALE FEMALE

PC COM PORT MicroNator
J2 Connector

FEMALE FEMALE

PC-SGND

PC-RTS*
PC-RX

PC-TX
PC-DTR*

J2
5
9
4
8
3
7
2
6
1

M
N

P
C

PC-COMx
5
9
8
7
2
6
3
4
1

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 59

6.5 UCT BUS CONNECTOR

PIN SIGNAL I/O SIGNAL NAME AND DESCRIPTION
#

29 GND - GND.

58 MODB* I MODE B - An input control line used in conjunction with the MODA
pin to select the MCU mode of operation.

VSTBY I STANDBY VOLTAGE - An input MCU RAM standby power line.

61 MODA* I MODE A - An input line used in conjunction with the MODB pin to
select the MCU mode of operation

LIR* O LOAD INSTRUCTION REGISTER - An open-drain output signal
used to indicate an instruction is starting.

60 AS O ADDRESS STROBE - An output control line used to de-multiplexed
port C address and data signals in the expanded multiplexed mode of
operation.

STRA* BI STROBE A - An input edge detecting signal for parallel I/O device

ESQ-132-14G-D

 Fig: 7 Bus Description

64
62
60
58
56
54
52
50
48
46
44
42
40
38
36
34
32
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2

63
61
59
57
55
53
51
49
47
45
43
41
39
37
35
33
31
29
27
25
23
21
19
17
15
13
11
9
7
5
3
1

I2C-SDAI2C-SCL
RESERV1PDWN
VBATAD0
AD1AD2

PE2PE7
PE3VRH
VRLMODB
GNDAS

A13 A14
A15 PA0
PA1 PA2
PA3 PA4

AD3

A5
A6

AD5

A3A2
A4

PE6 PE5

A1

MODAR/W*

IRQ*
PD0 XIRQ*
RESET* AD7

PA5 PA6
PA7 VCC
PD5 PD4
PD3 PD2

A12A11
A10A9
A8PE0
PE4PE1

PD1

E VIN

A0

A7

BUS[00..64]

AD6
AD4

J3
ESQ-132-14G-D

AN7
AN6
AN1
AN0

AN3
AN2
AN5
AN4

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 60 http://www.micronator.com

handshaking in the single-chip mode of operation.

64 E O ENABLE CLOCK - An output control line used for timing reference. E
clock frequency is one fourth the frequency of the XTAL and EXTAL
pins.

62 R/W* O READ/WRITE - An output control line used to control the direction of
transfers on the MCU external data bus in the expanded multiplexed
mode of operation.

STRB* O STROBE B - An output strobe signal for parallel I/O device handshak-
ing in the single-chip mode of operation.

11 RESERV1 - Not connected, reserved for future expansion.

10 I2C-SCL - Not connected, reserved for I2C communication in future expansion.
09 I2C-SDA - Not connected, reserved for I2C communication in future expansion.

13 VBAT I/O Battery back-up voltage (one diode drop below VCC).

15 PC0/AD0 I/O PORT C (bits 0-7) - General purpose I/O lines.
15 PC1/AD1
16 PC2/AD2
17 PC3/AD3
18 PC4/AD4
19 PC5/AD5
20 PC6/AD6
21 PC7/AD7

22 RESET* BI RESET - An active low bi-directional control line used to initialized
the MCU.

23 XIRQ* I NON-MASKABLE INTERRUPT - An active low input line used to
request asynchronous non-maskable interrupts to the MCU.

25 IRQ* I INTERRUPT REQUEST - An active low input line used to request
asynchronous interrupts to the MCU.

24 PD0/RXD I/O PORT D (bits 0-5) - General purpose I/O lines. These lines can be used
with the MCU Serial Communications Interface (SCI) and Serial
Peripheral Interface (SPI).

26 PD1/TXD
27 PD2/MISO
28 PD3/MOSI
29 PD4/SCK
30 PD5/SS*

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 61

12 PDWN BI POWER-DOWN - Active HIGH signal to put the system in low power
mode.

32 PA7/OC1 I/O PORT A (bits 7-0) - General purpose I/O lines and/or
33 PA6/OC2 timer signals.
34 PA5/OC3
35 PA4/OC4
36 PA3/OC5
37 PA2/IC1
38 PA1/IC2
39 PA0/IC3

40 PB7/A15 O PORT B (bits 7-0) - General purpose output lines.
41 PB6/A14
42 PB5/A13
43 PB4/A12
44 PB3/A11
45 PB2/A10
46 PB1/A9
47 PB0/A8

48 PE0/AN0 I/O PORT E (bits 0-7) - General purpose input or A/D
50 PE1/AN1 channel input lines.
53 PE2/AN2
55 PE3/AN3
49 PE4/AN4
51 PE5/AN5
52 PE6/AN6
54 PE7/AN7

08 A0 O De-multiplexed output A0-A7 addresses.
07 A1
06 A2
05 A3
04 A4
03 A5
02 A6
01 A7

31 VCC - +5 Vdc outputted directly from the regulator.

63 VIN - Unregulated input power voltage. In case the expansion requires more
than 1 Amp of input power it will be possible to implement a more
powerful regulator to add instead of the one on the CPU board. The
power pin from the standard power connector (P2) is also connected to
this pin.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 62 http://www.micronator.com

6.6 I/O PORT CONNECTOR

PIN SIGNAL I/O SIGNAL NAME AND DESCRIPTION
NAME

25 GND - GND.

4 VCC +5Vdc - System main voltage supply.

8 PA0/IC3 I/O PORT A (bits 7-0) - General purpose I/O lines and/or
20 PA1/IC2 timer signals.
7 PA2/IC1
19 PA3/OC5 *** Special for TRACE.
6 PA4/OC4
18 PA5/OC3
5 PA6/OC2
17 PA7/OC1

16 PD5/SS* I/O PORT D (bits 5-2) - General purpose I/O lines./ SPI.
3 PD4/SCK I/O PORT D (bits 5-2) - General purpose I/O lines./ SPI.
13 RESERV2 - Not connected, reserved for future expansion. Most probably E.

9 PE7/AN7 IO PORT E (bits 0-7) - General purpose input or A/D channel input lines.
10 PE6/AN6
23 PE5/AN5
24 PE4/AN4
21 PE3/AN3
22 PE2/AN2

 Fig: 8 MCU I/O Connector

PA0

VCC

8
20PA1

PA2
PA3
PA4
PA5
PA6
PA7
PD5
PD4

PE7
PE6
PE5
PE4
PE3
PE2
PE1
PE0

AN7
AN6
AN5
AN4
AN3
AN2
AN1
AN0
IRQ*
XIRQ*
MISO
MOSI

PD2
PD3

8

7

6

5

4

3

2

1

9

10

11

12

13

14

15

16

25
4

9
10
23
24
21
22
11
12

RESERV2

7
19
6

18
5

17
16
3

13

14
1
2

15

PIO[00..21]

RP1

DB25/FEM
J5

1K

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 63

11 PE1/AN1
12 PE0/AN0

14 IRQ* I INTERRUPT REQUEST - An active LOW input line used to request
asynchronous interrupts to the MCU.

1 XIRQ* I NON-MASKABLE INTERRUPT - An active LOW input line used to
request asynchronous non-maskable interrupts to the MCU.

2 PD2/MISO IO PORTD-2 / Master In Slave OUT
15 PD3/MOSI IO PORTD-3 / Master Out Slave In.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 64 http://www.micronator.com

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 65

CHAPTER 7

EXPANSION OPTIONS

7.1 INTRODUCTION

This chapter provides information on the expansion options.

7.2 EXPANSION BOARD

Fig: 9, Fig: 9, Fig: 10, and Fig: 11 show the optional expansion Wire Wrap boards and their expan-
sion mechanism. The boards go on top or on the bottom of the MicroNator System board. No need
for a mother board or cable to connect them together. The BUS connectors mate with each other
and form a sandwich with a “thickness”, center to center, of 11/16 inch. (0.625” + 0.0625” =
0.6875”).

If the user wants to add expansion board, using wire-wrapped sockets, on top of the MCU board, he
should order an extra expansion connector to put between the two boards so as to extend the distance
between them. That way the extra length of the wire wrap pins will fit between the two boards and
they will not touch any component on the CPU board.

Usually the user is able to debug his developed board from the top of it. After the board is fully
debugged the user can plug it underneath the MCU board.

PCB #1PCB #2

 Fig: 10 System with two boards

Room for 1 wire-wrapped

PCB #1PCB #2 PCB #3

 Fig: 11 System with three boards

4.75”

5.
72

5”

D = 0.150”

0,0

PIN 1 = -0.350”, 1.300

COMPONENT SIDE

12

BACK

FRONT

 Fig: 9 Standard CPU-1/64e2

12

 Fig: 9 BUS
Connector

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 66 http://www.micronator.com

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 67

APPENDIX A

S-RECORD INFORMATION

A.1 INTRODUCTION

The S-record format for input modules was devised for the purpose of encoding programs or data
files in a printable format for transportation between computer systems. The transportation process
can thus be visually monitored and the S-records can be more easily edited.

A.2 S-RECORD CONTENT

When viewed by the user, S-records are essentially character made of several fields which identify
the record type, record length, memory address, code/data, and checksum. Each byte of binary data is
encoded as a 2-character hexadecimal number: the first character representing the high-order 4 bits,
and the second the low-order 4 bits of the byte.

The 5 fields which comprise an S-record are shown below:

TYPE
RECORD LENGTH
ADDRESS
CODE/DATA
CHECKSUM

Where the fields are composed as follows:

TABLE: 1 S-RECORD Format

PRINTABLE
TYPE CHARACTER CONTENTS

Type 2 S-record type - S0, S1, etc.

Record 2 The count of the character pairs in the record,
length excluding the type and record length

Address 4,6, or 8 The 2-, 3-, or 4-byte address at which the data field is to
be loaded into memory.

Code/data 0-2n From 0 to n bytes of executable code, memory loadable

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 68 http://www.micronator.com

data, or descriptive information. For compatibility with
teletypewriters, some programs may limit the number of
bytes to as few as 28 (56 printable characters in the S-
record).

Checksum 2 The least significant byte of the one’s complement of
the sum of the values represented by the pairs of charac-
ters making up the record length, address, and the code/
data fields.

Each record may be terminated with a CR/LF/NULL. Additionally, an S-record may have an initial
field to accommodate other data such as line numbers generated by some time-sharing systems.

Accuracy of transmission is ensured by the record length (byte count) and checksum fields.

A.3 S-RECORD TYPES

Eight types of S-records have been defined to accommodate the several needs of the encoding, trans-
portation, and decoding functions. The various Motorola upload, download, and other record trans-
portation control programs, as well as cross-assemblers, linkers, and other file creating or debugging
programs, utilize only those S-record which serve the purpose of the program. For specific informa-
tion on which S-records are supported by a particular program, the user manual for that program must
be consulted.

__

NOTE

The MicroNator System monitor supports only the S1 and S9 records. All data
before the first S1 record is ignored. Thereafter, all records must be S1 type until

the S9 record terminates data transfer.

An S-record format module may contain S-records of the following type:

S0 The header record for each block of S-records. The code/data field may contain
any descriptive information identifying the following block of S-records. The
address field is normally zeroes.

S1 A record containing code/data and the 2-byte address at which the code/data is to
reside.

S2-S8 Not applicable to MicroNator System.

S9 A termination record for a block of S1 records. The address field may optionally
contain the 2-byte address of the instruction to which control is to be passed. If not

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 69

specified, the first entry point specification encountered in the object module input
will be used. There is no code/data field.

Only one termination record is used for each block of S-records. Normally, only one header record is
used, although it is possible for multiple header records to occur.

S-record format programs may be produced by several dump utilities, debuggers, or several cross
assemblers or cross linkers. Several programs are available for downloading a file in S-record format
from a host system to an 8-bit or 16-bit microprocessor-based system.

A.4 S-RECORD EXAMPLE

Shown below is a typical S-record format module, as printed or displayed:

S00600004844521B
S1130000285F245F2212226A000424290008237C2A
S11300100002000800082629001853812341001813
S113002041E900084E42234300182342000824A952
S107003000144ED492
S9030000FC

The above value module consists of an S0 header record, four S1 code/data records, and an S9 termi-
nation record.

The S0 header record contains the following character pairs:

S0 S-record type S0, indicating a header record.

06 Hexadecimal 06 (decimal 6), indicating six character pairs (or ASCII bytes) follow.

00 00 Four-character 2-byte address field, zeroes.

44 48 52 ASCII “H”, “D”, and “R”- (HDR).

1B Checksum of S0 record.

The first S1 code/data record is explained as follows:

S1 S-record type S1, indicating a code/data record to be loaded/verified at a 2 byte address.

13 Hexadecimal 13 (decimal 19), indicating 19 character pairs, representing 19 bytes of
binary data, follow.

00 Four-character 2-byte address field; hexadecimal address 0000, in-
00 dicates location where the following data is to be loaded.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 70 http://www.micronator.com

The next 16 character pairs are the ASCII bytes of the actual program code/data. In this assembly lan-
guage example, the hexadecimal opcodes of the program are written in sequence in the code/data
fields of the S1 records:

28 5F BHCC $0161
24 5F BCC $0163
22 12 BHI $0118
22 6A BHI $0172
00 04 24 BRSET 0,$04,$012F
29 00 BHCS $010D
08 23 7C BRSET 4,$23,$018C

(Description of this code/data fields of the remaining S1 records, and stored in
memory location 0010, etc...)

2A Checksum of the first S1 record.

The second and third code/data records each also contain $13 (19) character pairs and are ended with
checksums 13 and 52, respectively. The fourth S1 code/data record contains 07 character pairs and
has a checksum of 92.

The S9 termination record is explained as follows:

S9 S-record type S9, indicating a termination record.

03 Hexadecimal 03, indicating three character pairs (3 bytes) follow.

00 Four-character 2-byte address field, zeroes.
00

FC Checksum of S9 record.

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 71

APPENDIX B

B.1 CONFIG REGISTER

* To change the config REGISTER:
*
* 1) Edit “CONFIG.ASM”. Go to the first line of the EQUATES and
* replace $0C with the new HEX value you want in the CONFIG register.
*
* ***************
* * EQUATES *
* ***************
*
* CF_VALUE EQU $0C value of CONFIG register
*
*
* 2) Assemble CONFIG.ASM with AS11.EXE:
*
* - ex: AS11 CONFIG.ASM -L > CONFIG.LST
*
* 3) Check CONFIG.LST for errors.
*
* 4) Convert CONFIG.S19 to CONFIG.BIN with MOTO2BIN.EXE
*
* - Execute MOTO2BIN.EXE
*
* - Choose: 1. Convertir S19 en BIN (use arrow to move around)
* - Answer: with ENTER (CARRIER RETURN)
*
* - Then: Nom du fichier:
* - Answer: CONFIG
*
* - Then: Déplacement: 00000
* - Answer: with ENTER (CARRIER RETURN)
*
* - Then: 0. FIN (you can move around with the arrow keys)
* - Answer: with ENTER (CARRIER RETURN) to exit
*
* - Now MOTO2BIN.EXE will generate a CONFIG.BIN
* 5) You have to rename CONFIG.BIN to BS_EEPRM.BIN
*

Save the original BS_EEPRM.BIN so you will be able to find it later. (Very
important because if you don’t have the original BS_EEPRM.BIN you will never

be able to download regular programs to MicroNator System).
*
* - Rename CONFIG.BIN to BS_EEPRM.BIN
*
* 6) Execute TALK.EXE

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 72 http://www.micronator.com

*
* 7) Now press ALT B just like you would download ordinary boot.
*
* - The program generate an ERROR6 Boostrap error:-4 after a few seconds
* This is normal.
*
* - Press any key to get out of bootstrap.
*
* - The CONFIG register is now programmed to your new value.
*
* 8) Exit TALK by pressing ALT X.
*
* 9) Get back your original BS_EEPRM.BIN
*
* 10)Verify your new CONFIG register.
*
* - Execute TALK. (If the prompt does not appear It may be necessary
* to redownload “MONITEUR” with ALT B)
*
* - Examine memory:
* MM 103f
*
* - Your new value for CONFIG register will be displayed.
*
* ---

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 73

APPENDIX C

 REAL TIME CLOCK ROUTINES

C.1 REAL TIME CLOCK DECODING

From $0280 to $03BF the decoder will select the Real Time Clock. The chip select of the RTC is its
SS pin # 7. It is active HIGH and it has to stay HIGH for the entire communication period when using
the SPI protocol. When not communicating it has to be LOW. So the decoder is made to latch HIGH
or LOW by the PALCE22V10.

If you read address $0280, the RTC chips delect will latch to a HIGH level and stay that way.

If you write to address $0280, the RTC chips delect will latch to a LOW level and stay that way.

So before using the SPI to communicate with the Real Time Clock, you can do a:

LDAA $0280*PALCE22V10 latches SS pin #7 ACTIVE

and the SS pin of the RTC will become active i.e. HIGH and stay that way because you are reading
address $0280.

You exchange information with the RTC using the SPI protocol.

22M

X2

C60 C61

R60

15pP15pF
32.768 KHz

 Fig: 12 Real Time Clock

VCC

DC60

8

XOUT

MC68HC68T1P

CTL[00..09]

U60

MISO 6

1

16
12

11

0.1uF

IRQ*3

2

10

MOSI 5

SCK 4

RTC 7

XIN

1415

13

R
61

R
62

R
63

C62
1uF

9

D60
1N270TR

MISO

MOSI

SCK

SS

VSS

INT*

CLK OUT
CPUR*

VDD
VSYS

PSE

LINE
POR*

VBATT

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 74 http://www.micronator.com

After the communication is finished, you do a:

STAA $0280.........................*PALCE22V10 latches SS pin #7 NOT ACTIVE

and the SS pin of the RTC will become inactive i.e. LOW and stay that way because you wrote at the
address $0280

This way of implementing the circuit is to free the SS* pin of the
CPU in case the user wants to add another slave or even another

master on the SPI bus.

C.2 REAL TIME CLOCK ROUTINES

NOTE
The addresses of those routines may vary with version number.

 **
 * Software support routines for the MC68HC68T1 Real-Time-Clock/RAM *
 * Routines include... *
 * RTCINIT - Subroutine to initialize Port D and SPI system. *
 * SETDFLT - Subroutine to set up a default time 12:00:00 Mon 1/1/1995 *
 * and alarm set to same time but turned off. RTC turned on. *
 * SETTIME - Subroutine to set time sec/min/hr as pointed to by Y-reg *
 * SETDATE - Subroutine to set date dow/dom/month/yr as pointed to by Y *
 * SETALRM - Subroutine to set alarm time sec/min/hr as pointed to by Y *
 * W1RTC - Subroutine to write A data to addr B in RTC *
 * R1RTC - Subroutine to read A data from addr B in RTC *
 * WBURST - Burst write B bytes starting at addr A in RTC, uses Y index *
 * RBURST - Burst raed B bytes starting at addr A in RTC, uses Y index *
 * DISPTIM - Display current time (alternate entry to do CR,LF first) *
 **
 *
 * Send one char to the terminal
 *
fddf f6 10 2e WRCH LDAB SCSR Wait for the port to be empty
fde2 c5 80 BITB #$80
fde4 27 f9 BEQ WRCH
fde6 84 7f ANDA #$7F Take out parity
fde8 b7 10 2f STA SCDAT
fdeb 39 RTS
 *
 **
 * RTCINIT - Subroutine to initialize Port D and SPI system. *
 **
fdec ce 10 00 RTCINIT LDX #REGBS Point at start of register block
fdef 86 00 LDAA #$00
fdf1 a7 08 STAA PORTD,X Init port D data
fdf3 86 18 LDAA #$18 SS=in,SCK,and MOSI=OUTS, others=INS...
 * ... to enable other master on SPI
fdf5 a7 09 STAA DDRD,X Set directions for port D pins
fdf7 86 54 LDAA #$54 SPIE,SPE,DWOM,MSTR;CPOL,CPHA,SPR1,SPR0
fdf9 a7 28 STAA SPCR,X SPI On, Master, CPOL:CPHA=0:1, 1MHz
fdfb 39 RTS ** Return from RTCINIT **

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 75

 **
 * SETDFLT - Subroutine to set up a default time 12:00:00 Mon 1/1/1995 *
 * and alarm set to same time but turned off. RTC turned on. *
 * SETOTHR - This is alt entry point to set time to that pointed-to by Y *
 * Y must point to ordered set of 11 bytes (see DFLTSEC as Ex) *
 **
fdfc 18 ce fe 27 SETDFLT LDY #DFLTSEC Point at data to set RTC for defaults
fe00 86 20 SETOTHR LDAA #RTCSEC Addr of first clock data loc in RTC
fe02 c6 0b LDAB #11 Number of bytes to burst transfer to RTC
fe04 8d 4e BSR WBURST Do burst transfer of default settings
fe06 b6 ff B5 LDAA RTCXTAL RTC Clk ON, 32 KHz crystal, 60Hz,
 * CLK OUT = 1 HZ.
 * $85 => 4.194304 MHz $95 => 2.097152 MHz
 * $A5 => 1.048576 MHz $B5 => 32.768 KHz
 *
fe09 c6 31 LDAB #RTCCTRL Address for RTC control reg
fe0b 8d 25 BSR W1RTC Transfer init control word to start RTC
fe0d 86 00 LDAA #$00 RTC Clk ON, 32KHz crystal, 60Hz,
 * CLK OUT = Xtal
fe0f c6 32 LDAB #RTCINT Address for RTC interrupt control reg
fe11 8d 1f BSR W1RTC Turn off RTC interrupts
fe13 39 RTS ** Return from SETDFLT or SETOTHR **
 *
 **
 * SETTIME - Subroutine to set time sec/min/hr as pointed to by Y-reg *
 **
fe14 86 20 SETTIME LDAA #RTCSEC Address of first byte of burst Sec/Min/Hr
fe16 c6 03 LDAB #3 Number of bytes to burst transfer
fe18 20 0a BRA BRSTOUT Go to common exit point
 *
 **
 * SETDATE - Subroutine to set date dow/dom/month/yr as pointed to by Y *
 **
fe1a 86 23 SETDATE LDAA #WEEKDAY Address of 1st byte of burst
 * WkDay/MoDat/Mo/Yr
fe1c c6 04 LDAB #4 Number of bytes to burst transfer
fe1e 20 04 BRA BRSTOUT Go to common exit point
 *
 **
 * SETALRM - Subroutine to set alarm time sec/min/hr as pointed to by Y *
 **
fe20 86 28 SETALRM LDAA #ALRMSEC Address of first byte of burst Sec/Min/Hr
fe22 c6 03 LDAB #3 Number of bytes to burst transfer
fe24 8d 2e BRSTOUT BSR WBURST Burst transfer to RTC
fe26 39 RTS *Return from SETALRM, SETDATE or SETTIME
fe27 00 00 92 DFLTSEC FCB $00,$00,$12+AM 12:00:00 AM
fe2a 01 01 01 95 DFLTDAT FCB $01,$01,$01,$95 Sun, 01/01/95
fe2e 00 FCB $00 Place holder for unused loc $27 in RTC
fe2f 00 00 92 DFLALRM FCB $00,$00,$12+AM 12:00:00 AM ($12+AM=$92)
 *
 **
 * W1RTC - Subroutine to write A data to addr B in RTC *
 **
 * R1RTC - Subroutine to read A data from addr B in RTC *
 **
fe32 ca 80 W1RTC ORAB #$80 Set MSB of Addr byte to indicate write
fe34 3c R1RTC PSHX Save X for now
fe35 ce 10 00 LDX #REGBS Point to start of register block
fe38 36 PSHA
fe39 b6 02 80 LDAA $0280 READ $0280 => CPU’s SS=HIGH
fe3c 32 PULA
fe3d e7 2a STAB SPDR,X Write Addr byte to RTC
fe3f 1f 29 80 fc BRCLR SPSR,X SPIF * Wait for SPIF

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 76 http://www.micronator.com

fe43 a7 2a STAA SPDR,X Initiate xfer of A to RTC
fe45 1f 29 80 fc BRCLR SPSR,X SPIF * Wait for SPIF

fe49 a6 2a LDAA SPDR,X Get data from RTC into A
fe4b 36 PSHA
fe4c b7 02 80 STAA $0280 WRITE $0280 => CPU’s SS=LOW
fe4f 32 PULA
fe50 c4 7f ANDB #$7F Restore original value to B
fe52 38 PULX Restore X
fe53 39 RTS ** Return from W1RTC or R1RTC **
 *
 **
 * WBURST - Burst write B bytes starting at addr A in RTC, uses Y index *
 **
fe54 8a 80 WBURST ORAA #$80 Set MSB of Addr byte to indicate write
fe56 3c PSHX Save X for now
fe57 ce 10 00 LDX #REGBS Point to start of register block
fe5a 36 PSHA
fe5b b6 02 80 LDAA $0280 READ $0280 => CPU’s SS=HIGH
fe5e 32 PULA
fe5f a7 2a STAA SPDR,X Write Addr byte to RTC
fe61 1f 29 80 fc BRCLR SPSR,X SPIF * Wait for SPIF
fe65 18 a6 00 MOREW LDAA 0,Y Get next data byte to transfer
fe68 a7 2a STAA SPDR,X Initiate xfer of A to RTC
fe6a 1f 29 80 fc BRCLR SPSR,X SPIF * Wait for SPIF
fe6e a6 2a LDAA SPDR,X Get data from RTC into A (clears SPIF)
fe70 18 08 INY Advance data pointer
fe72 5a DECB Continue for B bytes
fe73 26 f0 BNE MOREW Loop till B gets to zero
fe75 36 PSHA
fe76 b7 02 80 STAA $0280 WRITE $0280 => CPU’s SS=LOW
fe79 32 PULA
fe7a 38 PULX Restore X
fe7b 39 RTS ** Return from WBURST **
 *
 **
 * RBURST - Burst raed B bytes starting at addr A in RTC, uses Y index *
 **
fe7c 3c RBURST PSHX Save X for now
fe7d ce 10 00 LDX #REGBS Point to start of register block
fe80 36 PSHA
fe81 b6 02 80 LDAA $0280 READ $0280 => CPU’s SS=HIGH
fe84 32 PULA
fe85 a7 2a STAA SPDR,X Write Addr byte to RTC
fe87 1f 29 80 fc BRCLR SPSR,X SPIF * Wait for SPIF
fe8b a7 2a MORER STAA SPDR,X Initiate xfer to RTC (any data)
fe8d 1f 29 80 fc BRCLR SPSR,X SPIF * Wait for SPIF
fe91 a6 2a LDAA SPDR,X Get data from RTC into A (clears SPIF)
fe93 18 a7 00 STAA 0,Y Store new data byte
fe96 18 08 INY Advance data pointer
fe98 5a DECB Continue for B bytes
fe99 26 f0 BNE MORER Loop till B gets to zero
fe9b 36 PSHA
fe9c b7 02 80 STAA $0280 WRITE $0280 => CPU’s SS=LOW
fe9f 32 PULA
fea0 38 PULX Restore X
fea1 39 RTS ** Return from RBURST **
 *
 **
 * DISPTIM - Display current time in the form HH:MM SS *
 * CRLFTIM - alternate entry point to do CR,LF first *
 **
fea2 bd ee 22 CRLFTIM JSR OUTCRLF Send leading CR,LF to display
7f54 TIMTMP EQU TEMP_RTC

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

http://www.micronator.com Page 77

fea5 18 ce 7f 54 DISPTIM LDY #TIMTMP Point at 3 byte RAM holding area
fea9 c6 03 LDAB #3 Request read of 3 bytes...
feab 86 20 LDAA #RTCSEC Starting with seconds address
fead 18 3c PSHY Will need it again
feaf 8d cb BSR RBURST Read in current time from MC68HC68T1
feb1 38 PULX Original value of Y now in X TIMTMP
 * I don’t really like this sequence but I need to accomodate the calling
 * requirements of the Buffalo 3.2 routine “OUT1BYT”. Bytes are converted
 * to two ASCII hex characters and displayed. Data needs to be in the order
 * it will be displayed and pointed-to by X.
feb2 a6 02 LDAA 2,X Data in wrong order, get Hours
feb4 84 1f ANDA #$1F Strip off 12 Hr coding bits
 * This routine doesn’t handle 24 Hr mode time (you would change $1F to $7F)
feb6 e6 00 LDAB 0,X Get Seconds
feb8 e7 02 STAB 2,X
feba a7 00 STAA 0,X Data now in correct order
febc bd ee 0a JSR OUT1BYT Display hours (X moves to Minutes)
febf 86 3a LDAA #’:’ An ASCII colon
fec1 bd ed ab JSR OUTPUT Display colon between Hr and Min
fec4 bd ee 19 JSR OUT1BSP Display Minutes with trailing space
fec7 bd ee 0a JSR OUT1BYT Display Seconds
feca 39 RTS

NOTE

Those RTC routines were taken from the monitor of the evaluation board SBC68HC11 from:

CEGEP André Laurendeau, Lasalle, Qc.

and modified by:

Michel-André Robillard T.Sc.A. for RF-232

C.3 REAL TIME CLOCK CRYSTAL FREQUENCY

If the user decides to use another crystal for the RTC, default is 32.768 KHz, he just has to change the
byte at $FF65 as shown below. Room is provided on the PCB to accomodate any of those crystals.

ff65 b5 .RTCXTAL FCB $B5 $85 => 4.194304 MHz $95 => 2.097152 MHz
* $A5 => 1.048576 MHz $B5 => 32.768 KHz

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 78 http://www.micronator.com

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 79

O 34

Symbols

 18, 20
"C" 9
sign 25
$0000 to $00FF 16
$0000-$00FF 42
$0280-$02BF 17
$02C0-$0FFF 17
$1000-$103F 41
$102B 46
$1040-$7EFF 17
$7F00- $7FFF 42
$7F00 to $7FFF 43
$7F00-$7FFF 16
$7FF1 to $7FFF 47
$7FFD-$7FFF 28
$FF66 44, 46
$FF67 through $FFCD 49
$FF79 46
$FFD0 and $FFD1 16
$FFD0 to $FFD5 16
$FFD2 and $FFD3 16
$FFD2-$FFD3 16
$FFFE-$FFFF 16, 17
(CTRL) A 21
(CTRL) A , . 26
(CTRL) H 21
(CTRL) J 21
(CTRL) J , + 26
(CTRL) W 21
(CTRL) X 21
(CTRL)H or ^ or - 34
(CTRL)J or (SPACE BAR) or +

34
(-p1) 19
(P1) Pin Assignments 57
(-p2) 19
(RETURN) 21
... 20
/ 45
/ , = 26
/ or = 34
^ , - 26

“ALT - X” 19
“ALT” 18, 19
“ALT” “B” 16
“ALT” “L” 16
“ALT” and “B” 20
“BOOTSTRAP OK” 20
“BS_EEPRM.BIN” 16
“CONFIG $103F” 41
“CTRL A” 21
“CTRL-X” 21
“ILLOP” 25
“L” 18
“MONITEUR” 17
“proprietary of RF-232” 57
“R” 19
“thickness” 65
“WRITING ERROR” 34

Numerics

102B 44
19 200 32, 33, 40
19,200 44
19200 45, 46
2 PD2/MISO 63
23.9 Kbytes of EEPROM 42
256 bytes 43
32Kbytes 43
36th character 21
4.9152 MHz 46
7.5 Vdc 41

A

A/D channel 62
A/D PIN CONNECTION

CONSIDERATIONS
44

A0-A7 addresses 61
Abort/cancel 21
AC socket 41
Address of Write Subroutine 47
ALT B 72
ALT X 72
AS 59
ASCII 45
ASL 25

ASLD 25
ASM 23, 25, 53
Assembler/disassembler 25

B

BASIC 19
baud 15
baud rate 44
BBAUD 47
BCC 26
BCS 26
BF 23, 27
BHS 26
binary 25
bit7 is HIGH (1) 50
BLO 26
Block Fill 27
bootstrap mode 50
BPCLR 47
BR 23, 28
Breakpoint Set 28
BS_EEPRM.BIN 20, 44, 71
BUFFALO 45
BUFFALO 3.xx 47
BUFFAR 48
BUS CONNECTOR 59
BUS connectors 65

C

CALL 23, 30
Casing 8, 9
CEGEP André Laurendeau 77
change the config 71
Chapter 6? Support Information

57
characters mis-aligned 15, 33
Checksum 68
checksum 67
Checksum of S0 record 69
Checksum of S9 record 70
CHGBYT 48
CHKABR 48
Clock 7
CODE/DATA 67
COMMAND 23

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 80

Command interpreter 45
COMMAND LINE FORMAT

20
Communication Cable 8
Communication with CPU-11/

64e2 System 18
COMx port 19
COMx port switch 19
CONFIG 34, 43
CONFIG REGISTER 71
CONFIG register in appendix B

71
CONFIG.ASM 71
CONFIG.BIN 71
CONFIG.S19 20
conflict 43
Connecteur RS-232 dans Table

de DESC de sign 58
CONNECTOR SIGNAL DE-

SCRIPTIONS 57
Contents at a Glance 5
CONTINUE 37
Copyright 51
CPU jumps to a time-delay sub-

routine 50
CPU Vector Table 18
CR/LF/NULL 68

D

DB15 I/O 12
DB25 13, 58
DB25 I/O 12
DB9 12, 13, 42, 44, 58
DC Power Supply input 12
DCHEK 48
DECBUF 48
Dimensions 8
directory 14
disadvantage of EEPROM 49
Disassembler 17
DISPTIM 47, 77
DOM 17
DOW 17
Downloading S-Record 18
downloading S-Record 16

driver/receiver device 44
DTR* 58

E

E 60
EEON 41, 43
EEPROM 43
EEPROM busy flag 50
EEPROM goes inactive 50
END_END 52
Enter name of file to download

 18
EXAMPLE PROGRAM 30
Exit 19
Exit assembler 21
EXP + 1 65
EXP + 2 65
EXP + 3 65
EXP + 4 65
expanded multiplexed mode of

operation 42
Expansion Board 8
Expansion Board (para) 65
EXPANSION OPTIONS 65
Expansion Para 65
EXTDEV 46
extended JMP 53
EXTERNAL EQUIPMENT

REQUIRED 10
Extra Connector 8

F

TALK 18
F1 key 19
factory settings 19
FEATURES 8
Fig

CPU-11/64e2 System 12
Figure CPU-11/64e2 System 12
Final Installation 13

G

G 23, 31
GENERAL DESCRIPTION 9

GENERAL INFORMATION 7
Generating S-Record 18
GND 57, 59, 62
Gnd 12
GO 31

H

HARDWARE DESCRIPTION
41

HARDWARE PREPARA-
TION 11

HELP 23, 32
Help File 19
hex 25
HEXBIN 48
HOSTDEV 46
Hour 17
hours 17
HPRIO 16

I

I/O Port Connector "descrip-
tion" (para) 62

I/O port connector DB25F 62
I/O port DB25 41
I/O Port Interface 44
I/O Routines 46
I2C-SCL 60
I2C-SDA 60
Immediate addressing 25
INBUFF 48
INCBUF 48
INCHAR 46, 49
Indirect JUMP 18
INIT 46, 48
Initialization 45
initialization 54
In-line Assembler 17
INPUT 48
INPUT routine 46
INSTALL 14
installation 7
Installation of the communica-

tion cable 13
Installation of the power supply

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 81

13
Installation of the software 14
internal 512 bytes 41
internal RAM 43
INTERRUPT 15, 43
INTERRUPT VECTORS 52
IODEV 46
IRQ have to be enable 16
IRQ Pseudo-Vector Jump Table

53
IRQ* 60, 63

J

J2 57, 58
J3 57
J5 57
JMP SCI 17
JMP SPI 17
JMP STOPIT 54
JMP SWI 17
JMP TOC5 17
JMP XIRW 17
Jump Sub-Routine Table 47
Jump Table 47

L

licence 51
Limitations (pour BAUD rate

explainations) 15
LIR* 59
LSDL 25
LSL 25

M

M68HC11RM/AD REV2 43
MCU 7
MCU BAUD register 44
MCU Extension I/O Ports 7
MD 23, 33
MEMORY 43
MEMORY DISPLAY 33
MEMORY MODIFY 34
MICRO CONTROLLER 41
Minutes 17

minutes 17
mis-aligned 40
MM 23, 34
MODA* 59
MODB 42
MODB* 59
Mode 42
Mode Selection 42
Moniteur Memory Map Limita-

tions 17
Moniteur” Memory Map 17
MONITOR COMMANDS 21
MONITOR MEMORY 16
MONITOR PROGRAM 45
Monitor Program 20
Monitor Program Commands

23
Monitor Size 7
Month 17
MOTO2BIN.EXE 71
MOVE 23, 36

N

No Communication 19
NOCOP 41

O

OC5 40, 43
ON/OFF 11
OPERATING INSTRUC-

TIONS 15
OPERATING PROCEDURES

18
OPTIONS 8
OUT1BS 49
OUT1BY 49
OUT2BS 49
OUTA 48
OUTCRL 49
OUTLHL 48
OUTPUT 48
Output Compare #5 15
OUTRHL 48
OUTST0 49
OUTSTR 49

P

P 23, 37
RM 38, 23
P1 57
 18
PA0/IC3 61
PA3 43
PALCE 44
PALCE22V10 42
Para // Communication with

CPU-11/64e2 18
PARA Part of Write.asm 51
parameters 18
Part 51
PATH 13
PC0/AD0 60
PC-RX 58
PC-SGND 58
PC-TX 58
PD0/RXD 60
PD1/TXD 60
PD2/MISO 60, 63
PD3/MOSI 60, 63
PD4/SCK 60, 62
PD5/SS* 60, 62
PDWN 61
PE0/AN0 61
PORT A (bits 7-0) 62
PORT E (bits 0-7) 61, 62
POWER 12, 41
Power LED 11
Power Requirements 7
power supply 41
POWER SWITCH 19
PROCEED 15, 37
program counter (PC) 30, 40
PROGRAM DESCRIPTION

45
Programme pour CALL, G, P et

STOPAT 30
pseudo-vectors 46, 47

R

 18
-r- switch 19

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 82

R/W* 60
R1RTC 75
RAM 43
RBURST 76
READBU 48
Real Time Clock 7
REAL TIME CLOCK DE-

CODING 73
REAL TIME CLOCK ROU-

TINES 73, 74, 77
RECORD LENGTH 67
Ref d’exemple de breakpoint 28
REGISTER MODIFY 38
Registration 9, 11
re-initialize 19
Relative Humidity 7
Remote Reset 42
Removes (clears) all break-

points 28
Removes individual 28
repeat 21
RESERV1 60
RESERV2 62
RESET 11, 18
Reset 19
RESET SWITCH 19
RESET vector 16
RESET* 42, 60
RETURN 26
RM 38
RPRINT 47
RS- 232C 42
RS-232 Communication 42
RS-232C 41, 44
RTC using the SPI 73
RTCINIT 47, 74
RTCXTAL 47
RTS 30
RTS* 58

S

S0 67, 68
S0 header 69
S1 67, 68
S2-S8 68

S9 68
S9 termination record 70
SBC68HC11 77
SCHEMA // UCT bus connec-

tor diagram 59
SCHEMATIC input power sup-

ply circuit 57
SCI 46, 53
Seconds 17
seconds 17
Serial 13
Serial Cable 13
Serial Connector & Signals 13
Serial I/O Communication 44
SETALRM 75
SETDATE 75
SETDFLT 47, 75
SETOTHR 75
SETTIME 47, 75
signal mnemonic 57
Software 41
Software Installation 13
SP1 12
Special (Reserved) Settings 16
Special EEPROM Writing Rou-

tine 49
Special EEPROM Writing Sub-

routine (para) 49
Special for TRACE 62
Special Limitation 16
SPECIAL PARAMETERS 47
Special Reserved 18
special-bootstrap 42
SPECIFICATIONS 7
SPI 53
SPI protocol 73
S-RECORD CONTENT 67
S-RECORD EXAMPLE 69
S-RECORD INFORMATION

67
S-RECORD TYPES 68
SS pin of the RTC 73, 74
SS* pin of the CPU 74
STACK 50, 51
Stack 17
STANDARD COMMUNICA-

TION SETTINGS (DE-
FAULTS) 15

starting address of “MONI-
TEUR” 16

STOP 54
STOPAT 15, 23, 39, 53
STOPIT 54
Storage RAM 17
STRA* 59
STRB* 60
SUPPORT INFORMATION

57
SW1 54
SWI 28, 53
SWI vector address ($FFF6-

$FFF7) 28

T

T 23, 40
TABLE

2 Monitor Program Com-
mands 23

TABLE // vector table 55
Table de sélection de MODE 42
Temperature 7
TERMAR 48
Terminal I/O Ports 7
TIMTMP 76
To write vectors with WRITE

RTN 52
TOC5 53
TRACE 15, 40, 53
Trace 43
TYPE 67

U

U I/O BOARD 8
UCT BUS 43
UNPACKING INSTRUC-

TIONS 11
UPCASE 48
USER BOARD 8
Utility Subroutines 46

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 83

V

VBAT 60
VCC 61, 62
VCLM 55
VCOP 55
VECINIT 47
Vector Table 55
Vectors 16
VERSION 55
VILLOP 55
VIN 57, 61
VIRQ 55
VPAIE 55
VPAO 55
VRST 55
VRTI 55
VSCI 55
VSPI 55
VSTBY 59
VSWI 55
VTIC1 55
VTIC2 55
VTIC3 55
VTOC1 55
VTOC2 55
VTOC3 55
VTOC4 55
VTOC5 55
VTOF 55
VXIRQ 55

W

W1RTC 75
Wait/freeze screen 21
Wall-mounted supply 12
WARMST 47
WBURST 76
WCHEK 48
Wire Wrap board 43
wire-wrapped sockets 65
WR_RTS 52
WRCH 47, 74
WRITE 26, 28, 47, 50, 53
WRITE subroutine 43
Write.asm 51

WRITE_OK 51
Writing the high byte 52
Writing the low byte 52
WSKIP 48

X

XIRQ 53, 54
XIRQ* 60, 63

Y

Year 17

MicroNator UNIVERSAL DEVELOPMENT SYSTEM

Page 84

RF-232
1404, rue Galt

Montréal Qc H4E 1H9
(514) 761-4201

0131

C
28C

256-35

