
Micronator

The SME Server Developer's Guide

RF-232: 0.0.1 / mardi 22 janvier 2013 - 18:34

Mitel Corporation

Copyright © 2002-2006 Mitel Corporation

Last updated: $Date: 2006/05/29 09:02:22 $

Revision: $Id: devguide.sgml,v 1.50 2006/05/29 09:02:22 gordonr Exp $

This manual is released under the GNU Free Documentation License:

Copyright © 2002-2006 Mitel Corporation

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.1 or any later version published by the Free Software Foundation; with the Invariant Sections
being "About this manual", the license texts and this page, with no Front-Cover Texts, and with no Back-Cover
Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

The software examples and code fragments in this manual are released under the GNU General Public License:

Copyright © 2002-2006 Mitel Corporation

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

The Mitel Corporation logo is a trademark or registered trademark of Mitel Corporation in the United States and
other countries. Linux is a registered trademark of Linus Torvalds. The terms "ssh" and "Secure Shell" are trade-
marks of SSH Communications Security Corp.

Référence: http://wiki.contribs.org/SME_Server:Documentation:Developers_Manual

http://wiki.contribs.org/SME_Server:Documentation:Developers_Manual

The SME Server Developer's Guide

Sommaire

I The SME Server Developer's Guide.....................1
1. Mitel Corporation...2

II- An overview of the SME Server............................5
1. About this manual..5
2. Who should read this manual?...5
3. What is the SME Server?...5
4. Design philosophy...6

4.1. Principle 1: Automating best practice...6
4.2. Principle 2: Simplicity..6
4.3. Principle 3: Extensibility...7
4.4. Principle 4: Reliability..7
4.5. Architecture overview...7

III- SME Server internals...9
1. Configuration database..9

1.2. The configuration databases..14
1.3. Namespace issues..14

2. Actions and events...15
2.1. Actions..15
2.2. Events..16

3. Configuration file templates..20
3.1. Design of the template system..20
3.2. The Text::Template module..20
3.3. Template expansion...24

4. Process startup, supervision and shutdown................................27
4.1. Process startup..27
4.2. Process supervision: runit (and supervise)..27
4.3. Adding a supervised service..29

5. The server-manager web interface...29
5.1. The web directory...30
5.2. Web function scripts..30
5.3. Common files..33
5.4. Panel definitions..33

IV- Create an SME Server package step by step....35
1. Getting started..35

1.1. Creating a development environment...35

2. Getting to know how to customize the SME Server..................36
2.1. Exercise 1: Changing a configuration template..36
2.2. Exercise 2: The magic of templates..37
2.3. Exercise 3: Using events and actions..39
2.4. Exercise 4: Adding new configuration database parameters........................41
2.5. Exercise 5: Adding a user interface screen...43
2.6. Exercise 6: Adding a new event type..46
2.7. Exercise 7: Thought experiment - adding a new server application.............47

2013-01-22 RF-232: 0.0.1 3 / 83

SME server Developer's Manual

2.8. Customization guidelines..47

3. Packaging your application..48
3.1. A quick introduction to RPMs...48
3.2. Selecting and creating RPMs for your application.......................................48
3.3. Setting up your RPM development environment..49
3.4. Building an RPM..50

4. The SME Server development environment..............................54
4.1. Configuring your development environment..54
4.2. Modifying a SME Server package..56
4.3. Mailing Lists...59

V- Advanced customization of the SME Server.....60
1. Advanced customization principles...60

1.1. Leveraging the provisioning system for users, groups, and i-bays...............60
1.2. Programmatically creating users, groups, and i-bays...................................61
1.3. Reserving accounts to avoid conflicts with user, group, or i-bay names......62
1.4. Adding new account properties...62
1.5. Using the LDAP server...65
1.6. Data backup..66
1.7. Using the MySQL database..66
1.8. Sending email messages...68
1.9. Managing the firewall...69
1.10. Starting up programs automatically upon system boot...............................70

VI- Documentation and resources...........................72
1. Other sources of information...72

1.1. Perl modules..72
1.2. Documentation Links..72
Crédits..75
GNU Free Documentation License..82

4 / 83 RF-232: 0.0.1 2013-01-22

An overview of the SME Server

II- An overview of the SME Server
Référence: http://wiki.contribs.org/SME_Server:Documentation:Developers_Manual

1. About this manual

Mitel has released this documentation to encourage development on the SME Server platform. This document-
ation, the code examples herein, and the SME Server itself, are released under free licenses. These licenses per-
mit copying and modification under the terms of those licenses, and are reprinted in the front of this manual.

Note:

For Mitel developers
Mitel also maintains a separate, commercial release of the platform, called Mitel Standard Linux which
is the basis of the Mitel 6000 Managed Application Server. The Mitel Standard Linux release has addi-
tional features, such as Blades and interaction with the Mitel Applications Management Center, which
are not documented in this guide.
Please contact the Platforms Development Team for the Mitel Standard Linux developers guide, which
should be read in conjunction with this guide. Any issues with Mitel Standard Linux should be raised in
Mitel's internal problem tracking system.

2. Who should read this manual?

This manual is aimed at developers and provides the information they require to integrate their applications
into the SME Server platform. The manual discusses the key concepts of the SME Server such as the configur-
ation database, configuration file templates and the events and actions model which differentiate the SME
Server from other Linux distributions.

This manual is not a system administration or system tweaking guide for a particular release. Instead it
provides examples of SME Server development best practice. This manual is also useful for SME Server sys -
tem administrators to explain how the SME Server works "under the covers".

3. What is the SME Server?

The SME Server is a software package that can be installed on a standard PC in less than thirty minutes, con-
verting it into a complete, easy-to-use network server and firewall. The SME Server is based on the CentOS
Linux server distribution, packaged in such a way that no knowledge of Linux is required to install or operate
it. The CentOS packages are used unmodified, and configured automatically to emulate "best practice" from
expert system administrators.

The SME Server runs on commodity PC hardware, and supports a range of configurations and devices such as:

● RAID disk mirroring

● Wide variety of network cards

● Tape backup

2013-01-22 RF-232: 0.0.1 5 / 83

http://wiki.contribs.org/SME_Server:Documentation:Developers_Manual
http://wiki.contribs.org/File:Important.png

SME server Developer's Manual

● Parallel port, USB or network printers

● A variety of Internet connectivity options, including cablemodem, DSL/PPPoE, static IP and dialup

Software for the SME Server is packaged using RPM Package Manager (RPM) system. Existing packages
from CentOS and other third-party developers are used, wherever possible. The SME Server uses the "best of
breed" packages from the open source community. The design of the system allows for easy replacement of the
packages if better choices become available. The current packages in use are:

SME Server software

Feature Software

Web server Apache

Mail server qmail

DNS server djbdns and dnscache

FTP server ProFTPd

Windows file sharing Samba

Macintosh file sharing Netatalk

Remote administration SSH, PPTP, HTTP over SSL

Tape backups Flexbackup

Webmail Horde IMP

4. Design philosophy

Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away.
--Antoine de Saint-Exupéry

The SME Server automates the best practices of a skilled systems administrator, providing a simple interface
for the users and consistent, modular extensibility for the developers.

4.1. Principle 1: Automating best practice

A good systems administrator knows what tasks must be done, either regularly or occasionally, to manage an
Internet-connected server. Some tasks, such as backups and ensuring system security, are regular and ongoing.
Other tasks, such as setting up file sharing or adding a new user, are only performed from time to time. In each
case a good system administrator will not only know how to do the task itself, but also how to do it in a secure,
maintainable, extensible and efficient manner, in accordance with current industry best practice.

However, not every server has a dedicated, experienced system administrator. This is especially the case in
small businesses, where there may be no IT staff at all. Therefore, the goal of the SME Server is to automate
the activities performed by a good sysadmin, from simple tasks such as adding users right through to backups
and other complex activities, to the point where they can be easily performed by someone with little or no tech-
nical knowledge of the system.

4.2. Principle 2: Simplicity

The SME Server is characterized by its tight focus on providing network server functions. For the end-user, the
SME Server provides simple, extensible web-based management. For developers, the SME Server provides
clean, consistent, extensible interfaces to allow features to be added and modified.

Some Linux distributions are aimed at desktop users, general purpose server applications, or "enterprise" server
applications. The SME Server is different in that it is targeted towards providing network server functionality
for small to medium enterprises. Because of this, the SME Server is much smaller than many other Linux dis -

6 / 83 RF-232: 0.0.1 2013-01-22

An overview of the SME Server

tributions, as software packages which are not needed for this purpose (for example, the X window system) are
not included in the distribution.

The SME Server is also simple for a non-technical person to manage. For an end-user administering the server,
choices are kept to a minimum. If a decision is very likely to be the same for all small businesses, the answer is
assumed and the end user is not required to make a choice. When decisions are required, they are phrased in
terms independent of the underlying technology, so that end-users are not required to be intimately familiar
with Linux or Linux applications.

For developers, the simplicity is in the architecture of the SME Server system. Features are layered in such a
way that additional features can be added without affecting the current services, and often without requiring
modifications to the user interface.

4.3. Principle 3: Extensibility

SME Server's third design goal is extensibility, which provides a balance to the simplicity previously described.
Since the simplest possible server will not suit every need, we make it easy to customize and extend the server
in a number of ways.

Firstly, interfaces are provided for experienced users to customize the system from the Linux command line.
These include tools to manipulate the configuration database, trigger events, or modify the configuration files
for the various software installed on the system.

Secondly, applications allows developers to create additional software modules which can be easily installed
and configured by end-users. Applications may provide application software for the server's users, administra -
tion tools, network services, or any other type of software or data.

The SME Server architecture explicitly supports developers by making it easy to drop software into place and
remove it without needing to modify existing files. For instance, a web application does not need to edit the
web server configuration file, but can simply drop a template fragment into the appropriate directory on the
system and be assured that it will be expanded into the configuration file as required.

4.4. Principle 4: Reliability

The SME Server is designed to run without intervention 24 hours per day, seven days a week. This reliability
has been designed from the ground up: stable, well supported versions of the Linux kernel and applications,
RAID disk mirroring, automatic firewall, and process supervision. Where applications have been shown to be
insecure or unreliable, we use stable, secure replacements. The modular architecture allows this to be done
without affecting the system administrator's view of the system and with only localized effect on the de -
veloper's view.

4.5. Architecture overview

The SME Server consists of a simplified CentOS installation, together with a number of server applications,
and a layer of software that manages those server applications. The management software presents users with a
simplified user interface and automatically configures the server applications as necessary.

The applications are not recompiled or modified to work within the SME Server framework. Rather, the frame-
work automates the tasks of an experienced system administrator, and configures each application in a sensible,
standard way.

The SME Server framework has four components:

● server-manager and console user interfaces

● configuration databases

● template system, used to generate configuration files

● events and actions

2013-01-22 RF-232: 0.0.1 7 / 83

SME server Developer's Manual

When a user configures an aspect of the server through one of the user interfaces, the SME Server automatic-
ally configures the server applications relevant to that change. The SME Server does so using these steps:

● The user interface changes values in the configuration database. This database (actually a collection of
databases) contains parameters describing the state of the system (IP address assignments, policy settings,
domain names, email server configuration, user accounts, and so on). The user interface does not perform the
application reconfiguration, but instead signals an event to perform the changes.

● The event relevant to the changes being made to the configuration database is signalled. For example,
changes related to email configuration might signal the "email-update" event. These events are collections of
scripts and an event can be extended to perform additional functions by adding scripts to the event directory.
The actions for an event are run in a defined order to produce the desired system state.

● The actions within the event ensure that the configuration files used by the server applications are configured
correctly. This is done by combining "templates" for the configuration file with the values in the configuration
database.

● The actions then inform the applications that their configuration has been changed and that the application
should re-read the file, or restart, as appropriate.

Figure 5-1. SME Server Architecture

So, to recap: here are the steps performed when a system parameter is changed in the user interface (the same
steps are used both for the console and for the web-based manager):

● The user interface code modifies the settings in the configuration databases to specify the new system
configuration.

● The user interface code signals an event to inform the system that the configuration has changed.

● The event triggers a sequence of actions.

● The actions process a set of templates in order to generate new configuration files based on the current
settings and reconfigure services where necessary.

8 / 83 RF-232: 0.0.1 2013-01-22

http://wiki.contribs.org/File:Sme-server-architecture.png

SME Server internals

III- SME Server internals

1. Configuration database

1.1.1. Overview

All user-modifiable configuration parameters on the SME Server are stored in the configuration database.
These values are used to generate the system configuration files, such as those found in the /etc/ directory.

The configuration databases may be modified by various programs on the system, including the SME Server
manager, the SME Server console, or scripts run from the command line by a system administrator.

Each entry in the database is either a simple key/value pair or a key and a collection of related property/value
pairs.

Note:

The section describes the general structure of the configuration database. The actual entries and proper-
ties are subject to change between releases.

1.1.2. Simple entries

Simple configuration database entries take the form of a key/value pair:

[root@gsxdev1 ~]# config show AccessType
AccessType=dedicated

[root@gsxdev1 ~]# config show ConsoleMode
ConsoleMode=login

[root@gsxdev1 ~]# config show TimeZone
TimeZone=Australia/NSW

1.1.3. Complex entries

More complex entries consist of a key, a type, and a collection of property/value pairs:

[root@gsxdev1 ~]# config show atalk
atalk=service
 MaxClients=20
 status=enabled

[root@gsxdev1 ~]# config show dhcpd
dhcpd=service
 end=192.168.1.250
 start=192.168.1.65
 status=disabled

In most cases, complex entries are used in preference to simple entries. The complex entries allow additional
properties to be stored for an entry, which enhances the system's flexibility.

2013-01-22 RF-232: 0.0.1 9 / 83

http://wiki.contribs.org/File:Important.png

SME server Developer's Manual

1.1.4. Access from the command line

You can access configuration database entries from the command line using the config command, as shown
above, or the db command. The config command provides a shorthand for accessing the configuration data-
base. The following commands are equivalent:

[root@gsxdev1 ~]# config show LocalIP
LocalIP=192.168.1.100

[root@gsxdev1 ~]# db configuration show LocalIP
LocalIP=192.168.1.100

Note:

The term configuration database is used both to refer to the "master" configuration database and to refer
collectively to the set of configuration databases, which includes the individual accounts, networks and
configuration databases.

The db allows you to access all of the databases. For example to show the details of the admin entry from ac-
counts

[root@gsxdev1 ~]# db accounts show admin
admin=system
 EmailForward=local
 FirstName=Local
 ForwardAddress=
 LastName=Administrator
 Lockable=no
 PasswordSet=yes
 Removable=no
 Shell=/sbin/e-smith/console
 VPNClientAccess=no

Documentation for the db command is displayed if you run it without providing any arguments:

[root@gsxdev1 ~]# db
usage:
 /sbin/e-smith/db dbfile keys
 /sbin/e-smith/db dbfile print [key]
 /sbin/e-smith/db dbfile show [key]
 /sbin/e-smith/db dbfile get key
 /sbin/e-smith/db dbfile set key type [prop1 val1] [prop2 val2] ...
 /sbin/e-smith/db dbfile setdefault key type [prop1 val1] [prop2 val2] ...
 /sbin/e-smith/db dbfile delete key
 /sbin/e-smith/db dbfile printtype [key]
 /sbin/e-smith/db dbfile gettype key
 /sbin/e-smith/db dbfile settype key type
 /sbin/e-smith/db dbfile printprop key [prop1] [prop2] [prop3] ...
 /sbin/e-smith/db dbfile getprop key prop
 /sbin/e-smith/db dbfile setprop key prop1 val1 [prop2 val2] [prop3 val3] ...
 /sbin/e-smith/db dbfile delprop key prop1 [prop2] [prop3] ...

1.1.5. Access via the Perl API

You can also access configuration database entries programmatically using the esmith::ConfigDB and re-
lated Perl modules, which are abstractions for the esmith::DB module.

For example, we can retrieve and show the admin account details like this:

use esmith::AccountsDB;

10 / 83 RF-232: 0.0.1 2013-01-22

http://wiki.contribs.org/File:Important.png

SME Server internals

my $db = esmith::AccountsDB->open or die "Couldn't open AccountsDB\n";

my $admin = $db->get("admin") or die "admin account missing from AccountsDB\n";

print $admin->show();

This code fragment would display the same information as running the db accounts show admin command we
saw previously.

admin
 EmailForward = local
 FirstName = Local
 ForwardAddress =
 LastName = Administrator
 Lockable = no
 PasswordSet = yes
 Removable = no
 Shell = /sbin/e-smith/console
 VPNClientAccess = no
 type = system

The Perl API will be covered in more depth in the exercises later in this manual. For documentation on the API,
log into the SME Server and browse the documentation using the perldoc command:

perldoc esmith::ConfigDB
perldoc esmith::AccountsDB
perldoc esmith::HostsDB
perldoc esmith::NetworksDB

perldoc esmith::DB

1.1.6. Database initialization

The configuration databases are initialized from files in the /etc/e-smith/db/ hierarchy. These files can
perform one of three actions:

● Create a database entry and set it to a default value, if the entry does not already exist.

● Force a database entry to a specific value, regardless of its current setting.

● Migrate an entry from a previous value to a new value.

This design allows each package to provide part of the system configuration, or migrate the system configura -
tion values as required. Note that a single database property can only be "owned" by one package. Database
initialization is run during system install, system upgrade and after new software has been installed.

If you examine the /etc/e-smith/db/configuration/ directory you will see three subdirectories:
defaults/, force/ and migrate/ to match the three options above. A similar structure exists for each of
the other databases. A new database can be created by populating a new directory tree under the /etc/e-
smith/db/ directory.

[root@gsxdev1 db]# cd /etc/e-smith/db
[root@gsxdev1 db]# ls
accounts domains networks yum_installed
backups hosts spamassassin yum_repositories
configuration mailpatterns yum_available yum_updates

[root@gsxdev1 db]# ls configuration/
defaults force migrate

2013-01-22 RF-232: 0.0.1 11 / 83

SME server Developer's Manual

Defaults files

Defaults files are simple text files. If the corresponding database key/property already exists, it is skipped. Oth-
erwise, the key/property is created and the value loaded. For example, this file:

[root@gsxdev1 db]# cat configuration/defaults/sshd/status
disabled

would create the sshd database entry if it doesn't already exist, create the status property for that entry, again if
it doesn't already exist, and finally set the status property to disabled.

Force files

Force files are just like defaults files, except they overwrite the existing value. So, this file:

[root@gsxdev1 db]# cat configuration/force/sysconfig/ReleaseVersion
7.0rc2

would create the ReleaseVersion property of the sysconfig entry and unconditionally set its value to 7.0rc2

Migrate fragments

Migrate fragments are small pieces of Perl text which can be used to perform more complex migrations than is
possible with defaults and force files. They would normally be used to replace database keys or properties with
new names, or to adjust policy settings during an upgrade.

Each fragment is passed a reference to the current database in the $DB variable. This variable is an instance of
the appropriate esmith::DB subclass, e.g. esmith::AccountsDB when the accounts database migrate frag-
ments are being executed. This means that you can use the methods of that subclass, for example
esmith::AccountsDB->users().

Here is an example of a migrate fragment, which replaces the outdated popd entry with the new name pop3:

{
 my $popd = $DB->get("popd") or return;

 my $pop3 = $DB->get("pop3") ||
 $DB->new_record("pop3", { type => "service" });

 $pop3->merge_props($popd->props);

 $popd->delete;
}

This fragment checks whether the database (the configuration database in this case) has a popd entry. If that
entry does not exist, the migrate fragment returns immediately. If the popd entry exists, we need to convert it,
so we retrieve the pop3 entry (or create it if it doesn't already exist). We then merge the properties from the
popd entry into the pop3 entry and finally delete the popd entry.

If this migrate fragment is run again, it will return immediately as the popd entry has already been deleted.

Important notes about migrate fragments

- Please be careful with migrate fragments. Although they should only modify entries within the current
database, there are no restrictions placed on what they can do. The ability to open and even modify other
databases may be required to perform a migration.

- Migrate fragments must be safe to run multiple times. They should migrate the value when required and do
nothing in other cases.

- Migrate fragments should never call croak or die. This will cause the database migration to stop. If an error
is detected, call carp or warn to note the error in the logs.

12 / 83 RF-232: 0.0.1 2013-01-22

SME Server internals

- Migrate fragments should call good termination with return(0) rather than exit(0).

- Migrate fragments should be owned by the package requiring the migration so that the migration only oc-
curs when that package is installed.

- Migrate fragments should be self-contained and ideally perform only one migration per fragment.

- It is also possible to initialize and migrate database values in action scripts, but creation of migrate frag-
ments is strongly preferred. Creating defaults is a simple matter of creating text files and migrate frag-
ments require far less code than action scripts.

Evaluation order: migrate, defaults, force

When a database is loaded:

1. migrate scripts are run first

2. then defaults are loaded

3. and finally any force files are loaded.

This order allows migration of old format entries to occur prior to loading of new default values. Remember,
defaults will not change an existing database property.

Forcing database initialization

The database is initialized during a number of events, including console-save, so a call to signal-event con-
sole-save will evaluate all of the database fragments.

Note:

The console-save event is not a "reconfigure everything" event, and only changes items which can be
configured from the text-mode console. It is convenient in this case as it performs database initialization
and migration.
It is an SME Server requirement that all database entries and configuration files must be correctly con-
figured after a "reconfiguration reboot". This is available from the console and server manager and per-
forms the post-upgrade and reboot events. Packages should also provide links in other events (e.g.
"email-update" for email related changes) to provide reconfiguration without the reboot.

1.1.7. Important notes about the configuration databases

1. The configuration databases should only be modified using the tools and APIs provided.

2. The order of the entries and the order of properties is undefined.

3. The keys and property names are currently treated in a case-sensitive manner, though this may change in
the future. Do not create keys or property names which differ only by their case.

4. Underscores and hyphens are valid in key and property names, but should normally be avoided.

5. Do not "overload" an existing property with a new value. If the existing values do not meet your require-
ments, discuss your implementation with the developers. Values which are not known by the base may
cause serious issues on upgrade. If the existing panels have three choices, do not invent new choices
without enhancing the panel to support them.

6. The type pseudo-property is used internally and is reserved.

7. By convention, database keys are lower case, and property names are stored in mixed case. The type,
status and access properties are exceptions to this convention.

8. The storage location and internals of the databases is subject to change.

9. The configuration databases are currently stored as pipe-delimited flat text files in the /home/e-
smith/db/ directory.

2013-01-22 RF-232: 0.0.1 13 / 83

http://wiki.contribs.org/File:Important.png

SME server Developer's Manual

1.2. The configuration databases

1.2.1. Configuration

The most important database is the (master) configuration database. This database describes how the system
should operate; the type of Internet access to use, how email should be handled, and so on.

The configuration database contains a mix of simple and complex entries, although all new entries are complex
entries.

1.2.2. Accounts

Account details are stored in the accounts database, as complex entries. We classify accounts into several
types, including:

 User accounts: These are accounts created for individual users at the local organization. Each account has
a POP/IMAP mailbox and an area for storing files.

 Groups: Groups of users, which can be used for configuring permissions on storage areas and automatic-
ally provide a group e-mail address.

 Information bays: These accounts correspond to information bays defined in the system. These storage
areas can be accessed via filesharing, FTP and the web.

 System accounts: Linux system accounts which are reserved by installed software packages.
 URL accounts: Portions of the Web namespace which are reserved for system use. For example, the

server-manager account is reserved as it is used for redirecting web access to the server manager.
 Pseudonyms: Alternate names for existing accounts. For example, fred.frog could be a pseudonym for the

account ffrog, allowing email to be sent to either address.
 Printers: Network shared printers share the same namespace as other accounts so that they can be made

visible to the local network.

1.2.3. Domains

The domains database shows the domains handled by this server, including information about how to handle
web requests, and the DNS servers for the domain.

1.2.4. Networks

The networks database details the networks which should be treated as local by this server. Local networks
have additional access rights which are denied for other networks.

1.2.5. Hosts

The hosts database describes all hosts/machines known to this server and is used to generate DHCP and DNS
configuration.

1.2.6. Other configuration databases

There are several other configuration databases stored with the ones listed above, and the system design allows
for additional databases to be created as required.

1.3. Namespace issues

All entries in a single database share the same namespace. Users, groups, information bays, printers, and other
entries in the accounts database currently all share one namespace. This means that you cannot have a user with
the same name as an information bay, group or other entry in the accounts database.

However, it would be possible to have a host named fredfrog as well as a user named fredfrog as they are stored
in separate databases and thus different namespaces.

14 / 83 RF-232: 0.0.1 2013-01-22

SME Server internals

2. Actions and events

2.1. Actions

An action is a program, frequently written in a scripting language, which performs a single task. It is typically
an encapsulation of a task usually done by a system administrator, such as editing a configuration file or recon-
figuring a service. Actions are not called directly; they are always called by signalling an event.

The actions are stored in the /etc/e-smith/events/actions/ directory. These actions are then linked
into the relevant events as the same action may need to be performed in more than one event.. To create a new
action called myaction you simply create a program to perform the action myaction and save it as
/etc/e-smith/events/actions/myaction. Actions can be written in any programming language,
although additional platform support is provided for Perl code.

An example action script is set-external-ip which is called when the external IP address changes. Here's
the body of that script (at time of writing):

package esmith;

use strict;
use Errno;
use esmith::ConfigDB;

my $db = esmith::ConfigDB->open or die "Couldn't open ConfigDB\n";

my $event = $ARGV[0];
my $newip = $ARGV[1];

$db->set_value('ExternalIP', $newip);
$db->set_prop('ExternalInterface', 'IPAddress', $newip);

exit 0;

This script sets the ExternalIP value and the IPAddress property of the ExternalInterface record in the configur-
ation database to the value provided as a parameter. The $event parameter is not used in this particular script.

Note:

The two records exist due to a partial migration from simple to complex entries in the configuration
database. Setting both values in this script avoids the need to perform database migration in the ip-
change event.

2.1.1. Action script parameters

Action scripts are always called with at least one parameter; the name of the current event. Many action scripts,
such as set-external-ip, are called with a single additional parameter. This parameter is usually a config-
uration database key, for example the username being modified or the new IP address.

Action scripts rarely require more than two parameters. The details should be stored in the configuration data-
base(s) and only the key should be passed to the action scripts. Events are not meant to be used as function
calls. All configuration details must be stored in the configuration databases and the database key passed as the
parameter to the action. This allows other scripts to be added to the event.

Since the SME Server passes the name of the current event as the first parameter, it is often beneficial to write
action scripts which are polymorphic based on the event name. For example, the code to create a user and the
code to modify an existing user may be only slightly different and may well benefit from being in a single
script.

2013-01-22 RF-232: 0.0.1 15 / 83

http://wiki.contribs.org/File:Important.png

SME server Developer's Manual

2.2. Events

Events are a mechanism which allows the system to trigger a set of actions in response to actual events that
happen on the system. When one of the users interfaces modifies the configuration databases, it must signal an
event to regenerate the various server application configuration files according to the new configuration. The
user interface must never modify configuration files directly.

Each event is associated with a list of actions which should be performed when that event occurs and is defined
as a sub-directory of /etc/e-smith/events/ containing symbolic links to the appropriate actions,
loosely modelled after the System V init mechanism for starting servers. For example, if you examine the
/etc/e-smith/events/ip-change directory:

lrwxrwxrwx 1 root root 26 S15set-external-ip -> ../actions/set-external-ip*
lrwxrwxrwx 1 root root 21 S85update-dns -> ../actions/update-dns*
drwxr-xr-x 2 root root 4096 services2adjust/
drwxr-xr-x 5 root root 4096 templates2expand/

The symbolic links are given prefixes such as S15, S85, etc. to specify the order in which the actions should be
executed in a similar manner to the System V init mechanism.

You can change the actions performed by an event by changing the links in the event directory. You can also
create a new event by creating another sub-directory of /etc/e-smith/events/.

2.2.1. Implicit actions: services2adjust and templates2expand

Most events contain two common tasks: expanding various templates and adjusting (e.g. restarting) the relevant
services. For this reason, two implicit actions are included in all events. These implicit actions mean that addi-
tional code does not need to be written to perform these common tasks. The implicit actions are represented by
entries in the services2adjust/ and templates2expand/ subdirectories.

services2adjust

The services2adjust/ directory contains links mapping a specific service to the action to perform on that
service. For example, if signalling the event in question requires that the ntpd service is restarted, you simply
include the link ntpd -> restart in the services2adjust directory. The implicit action services2adjust
would then restart the ntpd service. As an example, the services2adjust/ directory for the ip-change
event is shown below:

lrwxrwxrwx 1 root root 6 masq -> adjust
lrwxrwxrwx 1 root root 7 ntpd -> restart
lrwxrwxrwx 1 root root 7 pptpd -> sigterm
lrwxrwxrwx 1 root root 6 qmail -> sighup
lrwxrwxrwx 1 root root 7 tinydns -> sigusr2

templates2expand

The templates2expand/ directory contains a list of the configuration files which need to be regenerated
from their templates. This list consists of a collection of empty files with the same file name as the configura -
tion file to be expanded and in a hierarchy mirroring their location on the system. For example, to expand tem -
plates for the /etc/samba/smb.conf configuration file, simply include the empty file
etc/samba/smb.conf in the templates2expand/ directory of the relevant event(s). For more detail,
see the Section called Mapping templates to events: templates2expand in Chapter 8.

Order of implicit actions

The implicit actions are implemented by inserting the action script generic_template_expand early in
the list of actions to be run in an event and the adjust-services action near the end of the list.

You should normally link your action scripts in the range S10 to S80 so that they occur after templates2expand
and before services2adjust.

16 / 83 RF-232: 0.0.1 2013-01-22

http://wiki.contribs.org/The_SME_Server_Developer's_Guide#TEMPLATES2EXPAND
http://wiki.contribs.org/The_SME_Server_Developer's_Guide#TEMPLATES2EXPAND
http://wiki.contribs.org/The_SME_Server_Developer's_Guide#TEMPLATES2EXPAND

SME Server internals

Note:

The generic_template_expand action is currently run at S05 and adjust-services is run at
S90. The order of action scripts within an event is subject to change between releases.

2.2.2. Signalling events

The signal-event program takes an event name as an argument, and executes all of the actions in that
event, providing the event name as the first parameter and directing all output to the system log. It works by
listing the entries in the event directory and executing them in sequence. So for example, the command:

signal-event console-save

will perform all the actions associated with the console-save event, which is defined by the contents of the
/etc/e-smith/events/console-save/ directory. This is exactly what the console user interface does
when you select save at the end of the console configuration wizard.

2.2.3. Events with arguments

So far we have described the following general principle throughout the SME Server; changes are made by al-
tering the configuration files, then signalling events. The actions triggered by each event typically regenerate
entire configuration files, taking into account the latest configuration information.

However, some changes are best made incrementally. For example, consider the user-create event. One of its
actions updates the LDAP directory, which it could do by deleting all of the users and recreating them based on
the updated accounts database. However, this is inefficient and would lose any additional LDAP attributes
which may have been stored. It would be better to simply add the new user incrementally, using the default
LDAP schema.

But how is the action code to know which user was just added? The new username is passed as an argument to
the user-create event. This way the action programs triggered by the user-create event have a choice. They can
either ignore the username argument and regenerate their output based on the updated list of accounts, or they
can pay attention to the username argument, retrieve the rest of the information about the new user from the
accounts database, and perform the incremental work to add the user.

Note:

Reminder: action scripts should normally take at most two arguments. The first is always the event
name. The second optional argument is a key into one of the databases. Events are not function calls.
Events are not currently serialized. In most cases overlapping events will not cause issues, but caution
should be exercised when events are signalled from programs.

2.2.4. Standard events and their arguments

The table below summarizes the key SME Server events and their argument if required. Remember, each action
script is always called with the event name as the first argument. The arguments listed in this table are provided
as the second argument.

Note:

Events which are not listed in this table are subject to change and may not appear in future releases of
the SME Server.

2013-01-22 RF-232: 0.0.1 17 / 83

http://wiki.contribs.org/File:Important.png
http://wiki.contribs.org/File:Important.png
http://wiki.contribs.org/File:Important.png

SME server Developer's Manual

SME Server standard events

Event Argument Description

bootstrap-con-
sole-save

(none)

Expands all templates in the system. It is a requirement that all
templates are correct after a combination of post-upgrade/reboot.
Called after the initial console wizard, after system upgrades, and
as part of a reconfiguration reboot.

console-save (none)

Expands templates and reconfigures services which can be
changed from the text-mode console and which do not require a
reboot. Services which do require a reboot for configuration will
be handled by bootstrap-console-save. The console-save event is
not a general "reconfigure everything" event.

email-update (none) Reconfigures services listed on the e-mail panel.

group-create, group-
delete, group-modify

Group - key into
accounts database

Called when a group is created/deleted/modified.

halt (none) Called when the system is being shutdown prior to power off.

host-create, host-de-
lete, host-modify

Host - key into
hosts database

Called when a host is created, deleted or modified.

ibay-create, ibay-de-
lete, ibay-modify

Ibay - key into ac-
counts database

Called when an information bay is created/deleted/modified.

ip-change
New external IP
address

Called when the external IP address changes, e.g. through a new
PPPoE connection or DHCP lease.

local (none)

Called after each reboot. Customisations which would normally
require modification of the /etc/rc.local file should instead
be installed as individual scripts in the /etc/e-
smith/events/local/ event directory.

network-create, net-
work-delete

Network - key
into networks
database

Called when a local network is created or deleted.

password-modify
User - key into
accounts database

Called when a user password is modified, including when the ac-
count is unlocked.

post-upgrade (and
post-install)

(none)

Called as final step of the CD upgrade (install). This event must be
immediately followed by a reboot. The bootstrap-console-save
event is then called after the reboot to complete the reconfigura-
tion. The only changes which should occur in this event are ones
which must be performed prior to the reboot (e.g. configuring the
boot loader). The post-install event is only called once, from the
CD installer.

pre-backup, post-
backup

Cause - type of
backup being per-
formed (e.g.
"tape")

The pre-backup event creates consistent system state for the
backup. For example, it creates an ASCII dump of the MySQL
databases. If the pre-backup event fails, the backup is not run. The
post-backup is called if the backup is successful and removes the
state files generated by pre-backup.

pseudonym-create,
pseudonym-delete,
pseudonym-modify

Pseudonym - key
into accounts
database

Called when a pseudonym is created/deleted/modified.

18 / 83 RF-232: 0.0.1 2013-01-22

SME Server internals

reboot (none) Called when the system is being shutdown prior to a reboot.

remoteaccess-update (none)
Reconfigures services listed on the Remote Access panel and up-
dates the firewall rules for all services.

user-create, user-de-
lete, user-modify

User - key into
accounts database

Called when a user is created/deleted/modified.

user-lock
User - key into
accounts database

Called when a user account is locked.

2.2.5. Handling deletions

When adding a user, the user is created in the accounts database, and various actions, such as creating the
Linux account, are performed in the user-create event. However, when deleting a user, we want to main-
tain the accounts database entry for as long as possible, in case there is information which the actions in the
user-delete event might need in order to cleanly delete the users.

The SME Server convention for handling deletions is:

1. Change the type of the entry to mark it as being in the process of being deleted e.g. a user entry becomes a
user-deleted entry.

2. Signal the relevant deletion event - e.g. user-delete
3. Remove the entry from the database, but only if the event succeeds.

With this approach, the action scripts can decide whether to ignore the user-deleted entries when performing
their tasks.

2.2.6. Event logs

All events, and all actions run by the event, are logged to the messages system log. Here is an example ac-
tion log, which has been formatted onto multiple lines to enhance readability:

Feb 2 13:22:33 gsxdev1 esmith::event[4525]:
 S65sshd-conf=action|
 Event|remoteaccess-update|
 Action|S65sshd-conf|
 Start|1138846952 730480|
 End|1138846953 66768|
 Elapsed|0.336288

From this single log, we can see the action script name, which event it was called in, when it started, ended and
how long it took (0.34 seconds). Now, let's add an action script which always fails and signal the event again:

Feb 2 16:11:54 gsxdev1 esmith::event[4787]:
 S99false=action|
 Event|remoteaccess-update|
 Action|S99false|
 Start|1138857114 58910|
 End|1138857114 81920|
 Elapsed|0.02301|
 Status|256

Note that this log has a new field Status, which is added if the action script returns a false (non-zero) exit
status. Suppressing the Status field when it is zero (success) makes it much easier to find failed actions in the
logs.

2013-01-22 RF-232: 0.0.1 19 / 83

SME server Developer's Manual

2.2.7. Failed events

If an action script fails, the entire event fails. The other actions scripts in the event are run, but the whole event
is marked as having failed.

By convention, if a delete event fails, the user interface does not delete the entry from the relevant database.
So, if the user-delete event fails, a "stray" user-deleted entry will appear in the accounts database. The event
logs with Status properties can be matched with the user-deleted entries to determine which action script failed
so it can be corrected in the future. This user-deleted entry will also block the creation of another account with
that name until the issue is corrected.

3. Configuration file templates

3.1. Design of the template system

Every piece of software has its own configuration format, and writing parsers for each one is a complex, time-
consuming and error-prone process. The SME Server software avoids the whole issue by using templates
which generate the correct configuration.

In most cases, SME Server configuration files are over-written when templates are expanded. In a few specific
cases, the existing configuration file is parsed and rewritten in-place. This is done where the configuration file
(e.g. /etc/fstab) is also automatically updated by some other process.

Templates are stored under /etc/e-smith/templates/ in a directory hierarchy which matches the
standard filesystem. For example, the template for /etc/inittab is stored in the /etc/e-smith/tem-
plates/etc/inittab/ directory. Each template is stored as a directory of template fragments and pro-
cessed by the Perl Text::Template module.

The template fragments are concatenated together in ASCIIbetical order (US-ASCII sort order) and the com-
plete file is parsed to generate the appropriate configuration files for the service. The use of fragments is part of
the SME Server's modular and extensible architecture; it allows third-party modules to add fragments to the
configuration where necessary.

Note:

It is also possible to store templates as single files, rather than as a directory of fragments. This method
is preserved for backwards compatibility, but does not provide the extensibility of directory based tem-
plates. Directory templates should be used for all new templates, even if that directory only contains a
single fragment.

3.2. The Text::Template module

The Text::Template module allows arbitrary Perl code to be embedded in a template file by surrounding it
in braces ("{" and "}"). The code inside the braces is interpreted and its return value replaces the section
between, and including, the braces. For instance:

The answer is { 2 + 2 }

becomes

The answer is 4

Variables can be passed in from the program which is expanding the template, hence:

Shopping list:
 {
 $OUT = '';

20 / 83 RF-232: 0.0.1 2013-01-22

http://wiki.contribs.org/File:Important.png

SME Server internals

 for my $item (qw(bread milk bananas))
 {
 $OUT .= "* $item\n";
 }
 }

would expand to:

Shopping list:
 * bread
 * milk
 * bananas

The SME Server template system uses this mechanism to automatically pass in global configuration variables
from the configuration database which can then be used to fill out the configuration files.

For example, the /etc/hosts template is fairly simple and composed of two fragments:

[gordonr@smebuild hosts]$ pwd
/etc/e-smith/templates/etc/hosts

[gordonr@smebuild hosts]$ ls
10localhost 20hostname

Let's look at those fragments. The first is a piece of static text, which Text::Template will include ver-
batim:

127.0.0.1 localhost

The second is more complex and relies on values from the configuration database:

{
 $OUT .= "$LocalIP\t";
 $OUT .= " ${SystemName}.${DomainName}";
 $OUT .= " ${SystemName}";
}

Note that the whole fragment is enclosed in braces. Within those braces is a section of Perl code. When this
template is expanded, it results in the following configuration file:

#--
!!DO NOT MODIFY THIS FILE!!
#
Manual changes will be lost when this file is regenerated.
#
Please read the developer's guide, which is available
at http://www.contribs.org/development/
#
Copyright (C) 1999-2006 Mitel Networks Corporation
#--

127.0.0.1 localhost
192.168.10.1 smebuild.gormand.com.au smebuild

The header block comes "for free" as part of the template system, courtesy of an optional file template-be-
gin, which is always processed as the first fragment. If it isn't provided, the text shown with # comments is in-
cluded.

The other lines are provided by the two fragments shown above. Note the use of the configuration database

2013-01-22 RF-232: 0.0.1 21 / 83

SME server Developer's Manual

variables: $LocalIP, $SystemName and $DomainName. All simple entries in the configuration database are
provided as global variables to the templates.

Note that all of the template fragments are concatenated together before evaluation, so it is possible to set val -
ues in fragments which are used in later fragments. This is a very useful model for reducing the code in indi -
vidual template fragments.

The complex entries in the configuration database are also provided as global variables to the templates. How -
ever, they are provided as Perl hashes instead of simple scalars. For example, here is how you might configure
the Network Time Protocol (NTP) server /etc/ntp.conf file:

server { $ntpd{NTPServer} }
driftfile /etc/ntp/drift
authenticate no

The NTPServer setting is stored in the ntpd configuration database record, and so can be accessed via the hash
accessor $ntpd{NTPServer}.

3.2.1. template-begin and template-end

Each template directory can contain two optional files template-begin and template-end . The tem-
plate-begin file is always processed as the first file of the template, and the template-end file is always pro -
cessed as the last file.

If the directory does not contain a template-begin file, the contents of /etc/e-smith/templates-
default/template-begin is used automatically.

If the directory does not contain a template-end, nothing is appended to the template output. It is mostly
used to provide the closing block for configuration files written in languages such as HTML and PHP, through
a link to an entry in the templates-default/ directory.

3.2.2. /etc/e-smith/templates-default

The /etc/e-smith/templates-default directory contains a set of template-begin and template-end
files for various languages. For example, if your template generates a perl script, you would link template-
begin to /etc/e-smith/templates-default/template-begin-perl and automatically get the
#!/usr/bin/perl -w line and a comment containing the contents of the default template-begin file.

[gordonr@sevendev1 devguide]$ ls /etc/e-smith/templates-default/
template-begin template-begin-perl template-end-php
template-begin-html template-begin-php
template-begin-pam template-begin-shell

Note:

You may also need a templates.metadata configuration file if your generated file needs to be ex-
ecutable.

3.2.3. Template fragment ordering

Template fragments are assembled in ASCII-betical order, with two exceptions: template-begin always comes
first, and template-end always comes last. Template fragments are often named to start with a two digit number
to make the ordering obvious, but this is not required.

Note:

The number of fragments and the order of those fragments within a template directory is subject to
change between releases.

22 / 83 RF-232: 0.0.1 2013-01-22

http://wiki.contribs.org/File:Important.png
http://wiki.contribs.org/File:Important.png

SME Server internals

3.2.4. Templates for user home directories: templates-user

Most of the templates on the system map to single, fixed output files, such as /etc/hosts. However, tem-
plates are also used to generate configuration files such as mail delivery instructions for users. These templates
are stored in the /etc/e-smith/template-user/ tree.

For example, the template for the .qmail file in user home directories (which details how mail is to be
handled), is stored under /etc/e-smith/template-user/.qmail/. As these templates have a vari-
able output filename, they are expanded using small pieces of Perl code in action scripts.

3.2.5. Local site overrides: templates-custom and templates-user-custom

It is possible that the standard templates are not correct for a particular installation, and so the local system ad -
ministrator can override the existing templates by placing files in the templates-custom tree. This is a
parallel tree to the normal templates hierarchy, and is normally empty. There is also a tem-
plate-user-custom tree for overriding entries in the templates-user tree.

Warning:

Never edit the standard templates. Your changes will be overwritten when packages are upgraded.

Note:

The template-custom trees should be reserved for local system overrides. Software should not install
files in this tree.

If a templates-custom entry exists for a template, it is merged with the standard templates directory during tem-
plate expansion, using the following rules:

1. If a fragment of the same name exists in both templates and templates-custom, the one from templates-cus-
tom is used, and the one from the standard templates tree is ignored.

2. If the fragments in templates-custom have different names from those in templates, they are merged into
the template as if they were in the templates directory.

3. If the templates-custom entry is a file, rather than a directory, it completely overrides the standard tem-
plate.

To make this concrete, let's assume we have the following template structure:

/etc/e-smith/templates/etc/book.conf:
10intro
30chapter3
40chapter4
80synopsis

and

/etc/e-smith/templates-custom/etc/book.conf:
30chapter3
50chapter5

The resulting template would be processed in this order:

1. template-begin from /etc/e-smith/templates-default
2. 10intro from /etc/e-smith/templates/etc/book.conf
3. 30chapter3 from /etc/e-smith/templates-custom/etc/book.conf
4. 40chapter4 from /etc/e-smith/templates/etc/book.conf

2013-01-22 RF-232: 0.0.1 23 / 83

http://wiki.contribs.org/File:Warning.png
http://wiki.contribs.org/File:Important.png

SME server Developer's Manual

5. 50chapter5 from /etc/e-smith/templates-custom/etc/book.conf
6. 80synopsis from /etc/e-smith/templates/etc/book.conf
7. template-end (empty), nominally from /etc/e-smith/templates-default

3.2.6. How to resolve conflicts with standard templates

It is possible that the standard templates may specify behaviour which is not appropriate for your application.
In many cases the templates will be driven by configuration database settings which allow their behaviour to be
customized, which should be the first thing to check.

In many cases, your application only needs to extend the behaviour of the template by adding one or more frag-
ments. This should be your second option and can be achieved by simply adding your fragment in the correct
place in the list of fragments.

In rare cases the standard template specifies a behaviour which conflicts with your application. In these cases,
you should do all of the following:

 Create a templates-custom directory to match the existing one in the templates hierarchy.
 Copy the conflicting fragment, and only that fragment, to the templates-custom directory. The fragment

should have the same name in both directories. At this point you have not changed the behaviour of the
system as the templates-custom entry will be preferred, but will behave identically.

 Modify the copy in templates-custom to suit your required behaviour.
 Raise a New Feature Request here: http://www.contribs.org/bugzilla/. Please attach your modified template

(or even better, a patch file) and provide details of why you think that the standard template should be
changed.

Note:

You should not release RPMs which install templates in the templates-custom directories. If the
behaviour of a base template needs to be changed, please raise a bug to discuss the change.

3.2.7. Sub-directory templates

It is also possible to split templates into further subdirectories. This can be very useful for evaluating the same
fragments in a loop, for example for each virtual domain in httpd.conf or each ibay in smb.conf.

Two examples of this can be found in /etc/e-
smith/templates/etc/httpd/conf/httpd.conf/80VirtualHosts which loops over the
/etc/e-smith/templates/etc/httpd/conf/httpd.conf/VirtualHosts/ directory, and
/etc/e-smith/templates/etc/smb.conf/90ibays which performs a similar loop over the
/etc/e-smith/templates/etc/smb.conf/ibays/ directory.

3.3. Template expansion

3.3.1. Mapping templates to events: templates2expand

The SME Server is designed to ensure consistent and reliable operation, without requiring command-line ac-
cess. Whenever an event is signalled, the relevant templates for that event are expanded and the services are
notified of the configuration changes.

Requesting expansion of a template in an event is a simple matter of creating an empty file under the tem-
plates2expand hierarchy for that event. For example, here are the templates which are expanded during an ip-
change event:

[gordonr@smebuild templates2expand]$ pwd
/etc/e-smith/events/ip-change/templates2expand

24 / 83 RF-232: 0.0.1 2013-01-22

http://www.contribs.org/bugzilla/
http://www.contribs.org/bugzilla/
http://www.contribs.org/bugzilla/
http://wiki.contribs.org/File:Important.png

SME Server internals

[gordonr@smebuild templates2expand]$ find . -type f
./etc/services
./etc/pam.d/passwd
./etc/dhcpd.conf
./etc/pptpd.conf
./etc/securetty
./etc/hosts.deny
./etc/shells
./etc/proftpd.conf
./etc/fetchmail
./etc/ppp/options.pptpd
./etc/ppp/ip-down.local
./etc/ppp/ip-up.local
./etc/hosts.allow
./etc/startmail
./var/qmail/alias/.qmail-localdelivery-default
./var/qmail/alias/.qmail-default
./var/qmail/control/concurrencylocal
./var/qmail/control/me
./var/qmail/control/virtualdomains
./var/qmail/control/smtproutes
./var/qmail/control/plusdomain
./var/qmail/control/doublebounceto
./var/qmail/control/rcpthosts
./var/qmail/control/badhelo
./var/qmail/control/databytes
./var/qmail/control/mailrules.default
./var/qmail/control/helohost
./var/qmail/control/bouncehost
./var/qmail/control/envnoathost
./var/qmail/control/defaultdomain
./var/qmail/control/locals
./var/qmail/control/bouncefrom
./var/qmail/control/defaulthost
./var/qmail/control/concurrencyremote
./home/e-smith/.qmail

It is important to note that any package can request a template expansion for an event. The list shown above has
been contributed by a number of packages, and some of those packages have requested expansion of more than
one template:

[gordonr@smebuild templates2expand]$ find . -type f|xargs rpm -qf | sort | uniq
e-smith-base-4.15.6-01
e-smith-email-4.15.4-01
e-smith-pptpd-1.11.0-18
e-smith-proftpd-1.11.0-25
e-smith-qmail-1.9.0-11
smeserver-qpsmtpd-1.0.1-09

3.3.2. Template permissions and ownership: templates.metadata

Templates are normally expanded to be owned by root and are not executable, which is a reasonable default for
most configuration files. However, templates may need to generate configuration files which are owned by a
different user, or which need to be executable or have other special permissions. This can be done by creating a
templates.metadata file which defines the additional attributes for the expansion.

Note:

Configuration files should generally not be writable by any user other than root. In particular, configura-
tion files should not normally be writable by the www user as this poses a significant security risk.
Installation advice which says chmod 777 is almost invariably wrong.

2013-01-22 RF-232: 0.0.1 25 / 83

http://wiki.contribs.org/File:Important.png

SME server Developer's Manual

For example, here is the metadata file /etc/e-smith/templates.metadata/etc/ppp/ip-up.-
local:

UID="root"
GID="daemon"
PERMS=0755

which sets the group to daemon and makes the script executable. Note that the file is readable by members of
the daemon group, but it is not writable by anyone but root. It is also possible to use the same template to gen -
erate multiple output files, such as in this example:

TEMPLATE_PATH="/etc/sysconfig/network-scripts/route-ethX"
OUTPUT_FILENAME="/etc/sysconfig/network-scripts/route-eth1"
MORE_DATA={ THIS_DEVICE => "eth1" }
FILTER=sub { $_[0] =~ /^#/ ? : $_[0] } # Remove comments

The templates.metadata file for route-eth0 just uses eth0 instead of eth1 on the second and third lines. Note also
the FILTER setting which allows post-processing of the generated template.

There are many examples under /etc/e-smith/templates.metadata/ and the full list of options can
be seen with:

perldoc esmith::templates

3.3.3. Manual testing: expand-template

It is sometimes useful to expand templates manually during testing, which can be done with the expand-tem-
plate command. The syntax of this command is simply:

expand-template filename

where filename is the name of the configuration file you want to generate, e.g. /etc/hosts.

Note:

expand-template is designed for testing, and not as the standard way to expand templates. The cor-
rect way to ensure that a template is expanded is to create the templates2expand files in the relev-
ant events, along with any templates.metadata files which may be required.

3.3.4. Perl API: processTemplate

In rare circumstances you may need to call processTemplate directly. Explicit calls to processTemplate are
typically only used when the output filename is variable, such as when processing the .qmail files for each
group:

use esmith::templates;

foreach my $group (@groups)
{
 my $groupName = $group->key;

 [...]

 processTemplate(
 {
 CONFREF =>
 {
 Members => $members,
 },

26 / 83 RF-232: 0.0.1 2013-01-22

http://wiki.contribs.org/File:Important.png

SME Server internals

 TEMPLATE_PATH =>
 "/var/qmail/alias/.qmail-group",

 OUTPUT_FILENAME => "/var/qmail/alias/.qmail-$groupName",
 }
);

 [...]
}

Note:

Software which was written for SME Server before release 7 will have a number of scripts which call
processTemplate. In almost all cases, these can be replaced with simple flag files in the tem-
plates2expand/ directory of the relevant events. The new method is far more efficient as a single
invocation in perl is used to expand all template files.

4. Process startup, supervision and shutdown

4.1. Process startup

In typical Linux systems, services (processes) are started at boot time through a mechanism such as System V
init. When the system administrator needs to change the settings, they modify the configuration files and then
restart the service or notify the process that it needs to re-read the configuration.

It is usually assumed that processes which have been started will continue to run, and only require intervention
during configuration changes. There are a number of problems with this model, which are addressed by the
SME Server:

1. Processes do occasionally fail through software errors, memory exhaustion and accidental finger poking
by the system administrator.

2. Some startup scripts and processes do not gracefully handle server crashes, such as power outages. The
startup scripts and processes often use process identifier (PID) files to determine whether the process is
running. Reliable handling of PID files is impossible to achieve under all failure cases.

3. Many processes do not deal properly with rapid invocation of stop and start requests. This is often, but not
always, due to "PID file race" conditions.

4.2. Process supervision: runit (and supervise)

The SME Server addresses these issues by running processes under the runit process supervision environment,
which:

1) runs each process under control of its own supervisor process
2) imposes process limits
3) restarts the process if it fails
4) provides a consistent mechanism for controlling the underlying process

Note:

Gerrit Pape's runit came from previous work by Dan Bernstein on the supervise supervision environ-
ment. runit provides additional features, and has been released under a free software license.

4.2.1. The runit process tree

When a Linux system boots, it starts the init process, which then starts all other processes. When init enters
"run-level 7", it starts /etc/runit/2 from an entry in /etc/inittab.

2013-01-22 RF-232: 0.0.1 27 / 83

http://wiki.contribs.org/File:Important.png
http://wiki.contribs.org/File:Important.png

SME server Developer's Manual

/etc/runit/2 starts the runsvdir master supervision process, which scans the /service/ directory for
work to do. If the runsvdir command happened to fail, it would be restarted by init.

The runsvdir command looks for subdirectories under the /service/ directory, and starts a runsv process
to manage that directory. If any of the runsv processes fail, they will be restarted by runsvdir.

Each runsv process looks for a run script under the directory it is managing. runsv runs the run script and
keeps a connection to the process started by that script. If the process dies, it is restarted.

If the directory also has a log sub-directory, runsv runs run script in that directory and connects the output of
the main program to the input of the "logger" process.

This produces a process tree which looks something like this:

[root@gsxdev1 events]# pstree 1
init-+-acpid
 |-md1_raid1
 |-md2_raid1
 | ...
 |-runsvdir-+-runsv-+-multilog
 | | `-ulogd
 | |-6*[runsv---multilog]
 | |-runsv-+-multilog
 | | `-ntpd
 | |-runsv-+-multilog
 | | `-tinydns
 | |-runsv-+-cvm-unix
 | | `-multilog
 | |-runsv-+-multilog
 | | `-mysqld
 | |-5*[runsv-+-multilog]
 | | `-tcpsvd]
 | |-runsv-+-multilog
 | | `-oidentd
 | |-runsv-+-multilog
 | | `-smtp-auth-proxy
 | |-runsv-+-multilog
 | | `-smbd---smbd
 | |-runsv---httpd---10*[httpd]

This looks like a complex process tree, but is a critical part of the SME Server's design for reliability. Each pro-
cess is independent, has a consistent management interface, has process limits imposed on it, and will restart if
it happens to fail.

Note:

For the curious, if init fails, the system reboots.

For further documentation on runit, refer to the runit manual page.

4.2.2. Run-level 7 and the e-smith-service wrapper

The SME Server runs in the normally unused run-level 7. This ensures that the only software running on the
SME Server is software that we have chosen to run, and it is started and stopped in a consistent way. If we need
to replace a standard startup script with one which runs the process under supervise, we can do so without
modifying the original package.

In order to run a process under run-level 7, all you need to do is provide a link in the /etc/rc.d/rc7.d/
directory to your startup script. However, in most cases your process should only start if it is enabled in the
configuration database.

If you look at the /etc/rc.d/rc7.d/ directory. you will see that it contains a large number of links to the

28 / 83 RF-232: 0.0.1 2013-01-22

http://wiki.contribs.org/File:Important.png

SME Server internals

/etc/rc.d/init.d/e-smith-service script.

S00microcode_ctl -> /etc/rc.d/init.d/e-smith-service
S05syslog -> /etc/rc.d/init.d/e-smith-service
S06cpuspeed -> /etc/rc.d/init.d/e-smith-service
S15nut -> ../init.d/e-smith-service
S15raidmonitor -> /etc/rc.d/init.d/e-smith-service
S26apmd -> /etc/rc.d/init.d/e-smith-service
S35bootstrap-console -> /etc/rc.d/init.d/e-smith-service
[...]

This script is key to ensuring that services start when they are enabled and do not start when they are disabled,
as it:

 Checks the name of the link, e.g. S05syslog
 Removes the S05 prefix, leaving syslog
 Checks to see whether syslog is defined in the configuration database, and whether it has its status set to

enabled.
 If so, it runs the /etc/init.d/syslog script with the argument start.
 If the service is not enabled, it exits without starting the service.

Note:

If a script exists in the /etc/init.d/supervise/ directory, e-smith-service will use that in
preference to the one in the /etc/init.d/ directory. This allows us to install our own supervised
startup scripts without modifying the original package.

4.3. Adding a supervised service

See http://cr.yp.to/daemontools.html

Check if your application has a -d option or similar which means that it stays in the foreground, and logs to
standard output rather than syslog. That makes it suitable for running as a supervised service.

Create a /var/service/XXX directory, containing an executable 'run' script something like:

#! /bin/sh
exec 2>&1
exec /var/service/XXX -d

and a /var/service/XXX/log directory, containing an executable 'run' script something like:

#! /bin/sh
exec setuidgid smelog \
 /usr/local/bin/multilog t s500000 \
 /var/log/XXX

You would then do:

mkdir /var/log/XXX
chown smelog.smelog /var/log/XXX
ln -s /var/service/XXX /service
touch /var/service/XXX/down

5. The server-manager web interface

The user interfaces to the SME Server (the web based server-manager and the text mode console interface) per-

2013-01-22 RF-232: 0.0.1 29 / 83

http://cr.yp.to/daemontools.html
http://wiki.contribs.org/File:Important.png

SME server Developer's Manual

form their work by modifying the master system configuration database to describe the new system configura-
tion, and then regenerating the various application configuration files by signalling an event.

This decoupling of the user interfaces from the system configuration allows packages to be added and removed
without modifying the user interface code. It also allows all actions performed by the manager to be scripted, if
this is desired. For example, if a new package needs to expand a template when users are created, it can just
create the appropriate links in the user-create event.

5.1. The web directory

The primary files which make up the SME Server manager are kept in the /etc/e-smith/web/ directory.
These files define the layout of the web functions and require auxiliary files which provide translations and the
implementation of the functions.

Web interface directories

Name Description

/etc/e-smith/web/common/ Common files such as images and page headers.

/etc/e-smith/web/functions/
Screen definitions, written in FormMagick XML. The scripts in
this directory are linked into the cgi-bin directory of the panels
in which they should appear.

/etc/e-smith/web/panels/ Top-level directory for panel definitions. Each panel is a collection
of screens, presented as a single user interface.

./manager/{cgi-
bin,common,html}/

Sub-directories for the HTML, CGI and common files for the
"manager" panel, which is accessed by the /server-manager/ URL.

./password/{cgi-
bin,common,html}/

Sub-directories for the "password" panel, which is accessed by the
/user-password/ URL.

/etc/e-smith/locale/ Sub-directoryTop-level directory for all panel localizations.

./en-us/etc/e-
smith/web/functions/ Sub-directory containing localization into US English.

./fr/etc/e-smith/web/func-
tions/ Sub-directory containing localization into French.

/usr/lib/perl5/site_perl/ Top-level directory for all Perl modules.

./esmith/FormMagick/Panel/ Sub-directory containing Perl modules which provide the imple-
mentations to support the panel definitions.

5.2. Web function scripts

The functions sub-directory contains all of the screen definitions for all panels. Each screen definition is a
CGI script which displays the screen and also handles the CGI form submission. The scripts are written using
the CGI::FormMagick toolkit, which separates the screen layout from the panel implementation code, facil-
itates form validation and provides full support for localization of the manager.

5.2.1. An overview of FormMagick

Layout of a FormMagick script

This section describes the FormMagick panel which is used in the Section called Exercise 5: Adding a user in-
terface screen in Chapter 12. A typical FormMagick web function starts with the script preamble, which notes
it as a perl script and informs the vi editor that the majority of the file is XML, rather than perl.

30 / 83 RF-232: 0.0.1 2013-01-22

http://wiki.contribs.org/The_SME_Server_Developer's_Guide#EXERCISE5
http://wiki.contribs.org/The_SME_Server_Developer's_Guide#EXERCISE5
http://wiki.contribs.org/The_SME_Server_Developer's_Guide#EXERCISE5
http://wiki.contribs.org/The_SME_Server_Developer's_Guide#EXERCISE5

SME Server internals

#!/usr/bin/perl -wT
vim: ft=xml:

This is followed by the navigation settings metadata, which determine where the script should appear in the
manager menu bar.

#--
heading : Demo
description : Logger
navigation : 1000 1000
#--

Next is a small number of lines of perl which create a FormMagick object and then call the display method
to draw the page.

use strict;
use warnings;

use esmith::FormMagick::Panel::loggerdemo;

my $f = esmith::FormMagick::Panel::loggerdemo->new();
$f->display();

And finally there is the FormMagick XML page description, which starts at the __DATA__ marker and contin-
ues to the end of file. We will examine that in the next section.

The FormMagick XML description

The FormMagick XML is divided into a preamble and then a set of pages. The preamble contains references to
the title, header and footer of the page. These are usually the same on all pages so that a consistent header and
footer is displayed.

<form
 title="FORM_TITLE"
 header="/etc/e-smith/web/common/head.tmpl"
 footer="/etc/e-smith/web/common/foot.tmpl">

The upper-case word FORM_TITLE is a placemarker token for a phrase which needs to be localised. There is
an associated lexicon file which provides the translation of this token into the appropriate language for the user
accessing the panel, as specified by their browser settings. For example, here is the English lexicon entry for
that token:

 <entry>
 <base>FORM_TITLE</base>
 <trans>Logger demo</trans>
 </entry>

If the user browses the panel with English as their chosen language, the panel will display in English. If they
choose French, French will be displayed. If an unsupported language is chosen, FormMagick will fall back to
US English. Adding another language is basically a matter of providing the lexicon for that language.

The rest of the XML description is a series of pages. In this example there is a single page. Each page starts
with a page tag, which gives the page a name for later reference and can optionally specify a pre-event and
post-event.

 <page name="First" pre-event="print_status_message()"
 post-event="change_settings">

2013-01-22 RF-232: 0.0.1 31 / 83

SME server Developer's Manual

The pre-event is a reference to a function in the panel implementation (described later) and called before the
page is loaded. The post-event is called after the user submits the information on the page, for example by
pressing the Save button.

Each page is then composed of a number of fields

 <field
 type="select"
 id="loggerdemo_Interval"
 options="10,20,30,40,50"
 value="get_interval()">
 <label>LABEL_LOGGERDEMO_INTERVAL</label>
 </field>

 <field
 type="select"
 id="loggerdemo_status"
 options="'disabled' => 'DISABLED', 'enabled' => 'ENABLED'"
 value="get_status()">
 <label>LABEL_LOGGERDEMO_STATUS</label>
 </field>

Each field describes a user interface widget (e.g. a select box) and provides the data required for that widget.
These data may be static lists (the options of the first field above), a set of key/value pairs (the options of the
second field above) or dynamic data returned from a subroutine (the value parameters in each of the fields).

The command perldoc CGI::FormMagick provides detailed documentation about the supported field types.

It is also possible to call subroutines which generate the required HTML for a section of a page. For example,
buttons are often added by calling the print_button routine:

 <subroutine src="print_button('SAVE')" />

Note:

Buttons should be part of the FormMagick XML description, and hopefully will be in the future. The
print_button routine is a workaround for the lack of a button widget.

Each page must finish with a closing page tag:

 </page>

After all of the pages have been described there is a single XML tag to close the form.

</form>

5.2.2. Navigation metadata

The web manager's navigation frame is generated automatically by examining the contents of the /etc/e-
smith/web/functions/ directory.

In order to be listed in the navigation frame, your CGI script must contain heading, description and navigation
lines, usually at the top of the script:

heading : Configuration
description : E-mail
navigation : 6000 6700

These define the category heading under which your add-on's admin interface should be listed, the title it

32 / 83 RF-232: 0.0.1 2013-01-22

http://wiki.contribs.org/File:Important.png

SME Server internals

should have, and the priority it should have in the listing order. The first number gives the priority of the head-
ing (usually a multiple of 1000) and the second number gives the priority of this particular item within that
heading group. In other words, a heading with a priority of 1000 will come before one with 6000 in the naviga-
tion panel, and within that heading category the individual items are listed in order from highest to lowest.

To figure out what numbers to give your own script, figure out where you want it to appear in the navigation
panel then check source code for the scripts which appear before and after where you want to be. For instance,
if you want your item to appear before "Remote Access" and after "Local Networks" in the navigation menu,
you would look at /etc/e-smith/web/functions/remoteaccess and /etc/e-
smith/web/functions/localnetworks and find the following:

heading : Security
description : Remote access
navigation : 5000 5200

heading : Security
description : Local networks
navigation : 5000 5300

You might then put something these lines in your own script:

heading : Security
description : Advanced security
navigation : 5000 5250

Tip: When naming your script, use a name which closely resembles the description (and hence the name in the
navigation panel). This makes it easier to correlate menu items to Perl scripts. Just take the descriptive name
and remove capital letters, punctuation and spaces. For instance, "Advanced security" might become /etc/e-
smith/web/functions/advancedsecurity

5.2.3. Permissions and security

The CGI scripts must have elevated permissions (setuid root) in order to write to the configuration database,
since they will be run by the web server (which runs as user www). To ensure that these scripts can only be run
by system administrators, the permissions on the parent directory and the scripts are set so that only the mem-
bers of the admin group can run them. These panels are also restricted in the web server configuration so that
only the admin user can access them.

5.3. Common files

The common sub-directory contains any static files (such as images) which are used by multiple panels.

5.4. Panel definitions

The panels directory contains the panel definitions. There is one sub-directory for each panel. Each panel
must have html and cgi-bin subdirectories. The cgi-bin sub-directory should contain only symbolic links to the
actual CGI scripts in the functions directory, and the html directory should contain the main index.html file for
the panel, as well as any required navigation links.

Note:

The word panel is also sometimes used to refer to an individual web manager web function.

Keeping the CGI scripts for all panels in a shared directory makes it much easier to create auxiliary panels with
slightly different options and permissions. You can just copy the entire panel directory, then customize the ac -
cess permissions and navigation links. For example, it would be very straightforward to create a password-pro-
tected panel which only allowed the creation and deletion of user accounts. That task could be delegated to ad-

2013-01-22 RF-232: 0.0.1 33 / 83

http://wiki.contribs.org/File:Important.png

SME server Developer's Manual

ministrative staff.

34 / 83 RF-232: 0.0.1 2013-01-22

Create an SME Server package step by step

IV- Create an SME Server package step by
step

1. Getting started

The best way to get started is to install an SME Server and start experimenting with it. Download a copy from
SME_Server:Download and burn your own CD.

If you (or any developers at your organization) have multiple computers on a home network, a cablemodem,
DSL, or dialup connection, and an old Pentium machine that you don't need, we recommend installing the SME
Server software on the old Pentium machine, and using it as a home gateway and firewall.

Note:

The SME Server software erases all data from the PC on which it is installed, to turn it into a dedicated
server that can run 24x7. Do not install it on a PC unless you are prepared to erase all of its data!

Alternatively, you can install the SME Server on a corporate LAN in server/gateway mode (creating a small
private network behind a firewall that occupies a single IP address on the Internet) or in server-only mode - in
which the SME Server provides network services to other computers as a peer on the network.

Warning:

The server-only mode is designed for LAN environments that already have a firewall/gateway.

In addition to feeling comfortable installing and using the SME Server software, you should also have a work -
ing knowledge of Linux, including use of the command line tools.

You should also be familiar with the perl programming language. Most of the SME Server software is written
in perl, and the configuration template mechanism is based on perl.

It is strongly recommended that you obtain and read a copy of the book Maximum RPM (ISBN 067231 1054)
or study the on-line version available at http://www.rpm.org/max-rpm/.

You also need to know how to use one of the Linux text editors such as vi, nano or pico. It is also possible
to edit files on a remote machine and copy them to the server. However, it is important that the files are con-
verted to Unix text format.

1.1. Creating a development environment

Packages which do not require compilation, for example shell and perl scripts, can be built on the SME Server
platform. All of the examples in this documentation can be performed on a standard SME Server installation.

Before attempting to compile any software, you should check whether the package is available from one of the
many well-maintained RPM repositories. Using these RPMs will ensure compatibility with the other RPMs on
the SME Server. You are likely to find the package you want in either the CentOS or Dag Wieers repositories.

If an RPM does not already exist, you should install a CentOS developer workstation or server for SME Server

2013-01-22 RF-232: 0.0.1 35 / 83

http://apt.sw.be/redhat/el4/en
http://mirror.centos.org/centos/4
http://www.rpm.org/max-rpm/
http://wiki.contribs.org/Special:BookSources/0672311054
http://wiki.contribs.org/SME_Server:Download
http://wiki.contribs.org/File:Important.png
http://wiki.contribs.org/File:Warning.png

SME server Developer's Manual

development. You will also need to install the e-smith-devtools packages which can be found on the SME
Server CD.

Note:

We strongly recommend against installing development tools, such as compilers, on any production
servers, especially those which are accessible from the Internet.

2. Getting to know how to customize the SME Server

Once you have studied the architecture of the SME Server, it is best to try to make some small customizations
to become comfortable with the concepts. The number one rule to remember is: customizations always involve
adding files to the server, rather than modifying existing files. This is very important, as it enables customiza-
tions to be easily packaged, and mixed and matched. The unique architecture of the SME Server enables virtu-
ally anything to be customized by adding a file in the correct location.

2.1. Exercise 1: Changing a configuration template

Let us say that you wish to customize your server so that it runs a specified program every twenty minutes. To
simplify the problem, let us assume that this program simply adds a line of dots to the log file
(/var/log/messages), i.e.:

/usr/bin/logger -t "Demo" "......"

Normally you would accomplish this by adding a line to the /etc/crontab file, which is the standard Linux
mechanism for running scheduled jobs. However, the default /etc/crontab file looks something like this
on an SME Server:

#--
 # !!DO NOT MODIFY THIS FILE!!
 #
 # Manual changes will be lost when this file is regenerated.
 #
 # Please read the developer's guide, which is available
 # at http://www.contribs.org/development/
 #
 # Copyright (C) 1999-2006 Mitel Networks Corporation
 #--

 SHELL=/bin/bash
 PATH=/sbin:/bin:/usr/sbin:/usr/bin
 MAILTO=root

 # run-parts

 01 * * * * root run-parts /etc/cron.hourly
 02 4 * * * root run-parts /etc/cron.daily
 22 4 * * 0 root run-parts /etc/cron.weekly
 42 4 1 * * root run-parts /etc/cron.monthly

 # logrotate
 12 1 */7 * * root /sbin/e-smith/signal-event logrotate

Note the auto-generated comment block which reminds you not to edit the file. If you do, your changes will be
overwritten when the template is next expanded by a system event. We want to append a new line that looks
like this (read the Linux crontab documentation to understand the format of crontab entries):

*/20 * * * * root /usr/bin/logger -t "Demo" "......"

36 / 83 RF-232: 0.0.1 2013-01-22

http://wiki.contribs.org/File:Important.png

Create an SME Server package step by step

Remember that we cannot simply edit the /etc/crontab file. The rule is that we must perform this custom-
ization by adding a new file to the system. To get an idea how to do this, have a look at the contents of the tem-
plate for /etc/crontab:

[gordonr@smebuild crontab]$ pwd
/etc/e-smith/templates/etc/crontab

[gordonr@smebuild crontab]$ ls
00setup 10runparts 20statusreport 65_logrotate email

Each of the files in that directory is a template fragment. The SME Server builds the /etc/crontab file by
assembling those fragments and running them through the template processor.

To make your customization, create your own additional fragment by creating a file in this directory called
25templatedemo with the following contents:

Template demo crontab entry:
 */20 * * * * root /usr/bin/logger -t "Demo" "......"

Next time the SME Server regenerates the /etc/crontab file, it will contain your additional fragment.
Starting the name with the prefix "25" forces the template fragment to go between the "20statusreport" and
"65_logrotate" fragments. Force the /etc/crontab file to be generated immediately by typing the com-
mand:

expand-template /etc/crontab

If you look at the /etc/crontab file now, you should see your new fragment at the appropriate place, and
your customization will take effect immediately (as cron notices when its configuration file has been changed).
Check /var/log/messages to see the results.

To package this customization, you will need to create an RPM package that contains this single file, and en-
sures that the /etc/crontab template is expanded in the relevant events. You should also call one of these
events in the RPM post-install section to ensure that the template is expanded without further action. Installing
that RPM on any SME Server will cause the customization to occur, and will start printing the line of dots to
the /var/log/messages logfile every 20 minutes.

The final point to note here is that if you remove your new file 25templatedemo and re-expand the
/etc/crontab template, the crontab will go back to the way it was, and your customization will disappear
cleanly. Therefore you should put a post-uninstallation script into your RPM package that runs the appropriate
events to expand the templates once more. That will result in a package that installs and uninstalls cleanly.

Remember that for testing you can call expand-template directly in the post-install and post-uninstall sec-
tions, but released software should use the templates2expand mechanism to request template expansion
in the relevant events.

2.2. Exercise 2: The magic of templates

For the next exercise, let us build on the first one. You have already created an exciting (o.k. not that exciting)
new capability - the ability of the server to write dots into the log file. Let us now take advantage of the fact
that the template processor can fill in values from the configuration database.

Edit the /etc/e-smith/templates/etc/crontab/25templatedemo file again, this time with the
following contents:

Template demo crontab entry:
 */20 * * * * root /usr/bin/logger -t "Demo3" "... {
 use esmith::AccountsDB;

2013-01-22 RF-232: 0.0.1 37 / 83

SME server Developer's Manual

 $adb = esmith::AccountsDB->open_ro;
 $adb->get_prop('admin', 'ForwardAddress') || 'admin';
 }

Once again, regenerate the template by typing:

expand-template /etc/crontab

If you look at the new /etc/crontab file, you will see that the template processor has replaced the block between
the braces with the actual email address of the administrator, which is defined in the accounts database.

Note:

Be careful with the placement of the braces in the example. We want two lines of output - the comment
and the line starting with the asterisk. If you move the opening brace onto a new line, you will end up
with three lines of output.

Whitespace is not significant and the code within braces should be formatted "nicely". How-
ever, whitespace outside braces is significant and will be copied literally to the output file.

You could check that value with the db accounts show admin command. With this change to the template, the
message which will go to the /var/log/messages log file every 20 minutes will contain the actual current
administrative email address, rather than a hardcoded text message.

Now here is the exciting part. Click on the E-mail function in the server manager user interface, and change the
administrative email address. If you look at /etc/crontab, you will see that it has been updated with the
new email address! Every 20 minutes you will receive a new entry in the messages log which automatically re-
flects the new setting of the administrator email address.

So by simply creating a single file 25templatedemo, you have created quite a sophisticated customization
that changes behaviour based on the system settings. And you have done so without affecting the rest of the
system or requiring additional changes to the user interface.

The reason this works is subtle, but follows from the overall architecture. It is critical to study this example un -
til you understand it thoroughly. If you understand exactly how this example works, you understand a substan-
tial part of the SME Server architecture.

To understand this example in detail, let's start from the top by studying the user interface. The implementation
section of the E-mail function can be found in the file /usr/lib/perl5/site_perl/esmith/Form-
Magick/Panel/emailsettings.pm. If you study the part of this script that gets executed when the user
clicks Save, you will find some Perl code that saves the administrator e-mail address into the configuration
database and signals the email-update event - thus informing the system that the email settings have
changed:

sub change_settings_delivery
 {
 my ($fm) = @_;
 my $q = $fm->{'cgi'};

 [...]

 my $admin_email = $q->param('AdminEmail');
 my $admin = $accounts->get('admin');
 if ($admin_email)
 {
 $admin->merge_props(
 EmailForward => 'forward',
 ForwardAddress => $admin_email,
);

38 / 83 RF-232: 0.0.1 2013-01-22

http://wiki.contribs.org/File:Important.png

Create an SME Server package step by step

 }
 else
 {
 $admin->merge_props(
 EmailForward => 'local',
 ForwardAddress => '',
);
 }

 [...]

 unless (system("/sbin/e-smith/signal-event", "email-update") == 0)
 {
 $fm->error('ERROR_UPDATING');
 return undef;
 }
 $fm->success('SUCCESS');
 }

When the email-update event is signalled, the SME Server executes all of the action scripts in the
/etc/e-smith/events/email-update/ directory. The event also expands all templates as noted in
the templates2expand/ hierarchy, including the /etc/crontab template.

That may all seem rather complicated, but it boils down to this: changing the administrator email address auto -
matically rebuilds the /etc/crontab template - and if you have customized that template, your customiza-
tion will automatically pick up the current administrator email address.

Note that if you wanted additional programs to execute whenever the email settings were changed, you would
put all of those programs in the /etc/e-smith/events/actions/ directory, then create symbolic links
to them from the /etc/e-smith/events/email-update/ directory. We use symbolic links because
you may want your program triggered by other events as well as email-update, and so you create links
from all of the relevant event directories back to your action program.

This system is, by design, extensible. For example, you could use this exact same type of customization to send
an email message every hour containing the current IP address. This is left as an exercise to the reader.

2.3. Exercise 3: Using events and actions

In the SME Server, events are like callbacks in a programming language. The system signals an event
whenever something interesting happens (e.g. a user is added, the IP address changes, etc.), which automatic-
ally executes all programs in the event directory. Therefore, any applications which need to know when a cer-
tain event is happening simply create a symbolic link from the event directory to a handler program, which will
get executed whenever the event occurs.

In the previous exercise, we relied on the predefined events and actions in the SME Server to keep the
/etc/crontab file up to date. In this example, we will create a new action script that will track the user ac-
counts in the system. This script can be used as a template for any type of application that has its own notion of
user accounts and needs to be driven by the existing user interface for adding, deleting, or modifying users.

Start by creating a new file called /etc/e-smith/events/actions/demo-user-tracking with
the following contents:

#!/usr/bin/perl -w

 # Set up Perl environment and libraries

 package esmith;
 use strict;
 use warnings;
 use esmith::ConfigDB;
 use esmith::AccountsDB;

2013-01-22 RF-232: 0.0.1 39 / 83

SME server Developer's Manual

 # Prepare to access configuration databases
 my $db = esmith::ConfigDB->open_ro
 or die "Couldn't open ConfigDB\n";

 my $accounts = esmith::AccountsDB->open_ro
 or die "Couldn't open AccountsDB\n";

 # Read domain name from configuration database
 my $domain = $db->get_value('DomainName');

 # Read command line arguments
 my $event = $ARGV [0];
 my $id = $ARGV [1];

 # If no command line arguments, assume this is the initial setup
 # of all users. Process all accounts of type "user" (ignore groups,
 # information bays, printers, etc.)

 unless ($event and $id)
 {
 for my $user ($accounts->users)
 {
 my $key = $user->key;
 my $first = $user->prop('FirstName');
 my $last = $user->prop('LastName');

 system ("/usr/bin/logger", "-t", "Demo3",
 "Initializing user $key ($first $last) in domain $domain");
 }

 exit 0;
 }

 # If command line arguments are present, then this is a create, modify,
 # or delete event, signalled by the SME Server event/action system.

 my $user = $accounts->get($id)
 or die "User $id does not exist\n";

 my $first = $user->prop('FirstName');
 my $last = $user->prop('LastName');

 if ($event eq 'user-create')
 {
 system ("/usr/bin/logger", "-t", "Demo3",
 "Creating user $id ($first $last) in domain $domain");
 }
 elsif ($event eq 'user-modify')
 {
 system ("/usr/bin/logger", "-t", "Demo3",
 "Changing user $id to ($first $last) in domain $domain");
 }
 elsif ($event eq 'user-delete')
 {
 system ("/usr/bin/logger", "-t", "Demo3",
 "Deleting user $id in domain $domain");
 }
 else
 {
 system ("/usr/bin/logger", "-t", "Demo3", "Ignoring $event event");
 }

 exit 0;

40 / 83 RF-232: 0.0.1 2013-01-22

Create an SME Server package step by step

Make sure the permissions are correct:

chmod +x /etc/e-smith/events/actions/demo-user-tracking

Now create symbolic links so that this program is executed whenever a user is created, modified, or deleted.
Make three symbolic links; one for each event directory:

cd /etc/e-smith/events
ln -s ../actions/demo-user-tracking user-create/S90demo-user-tracking
ln -s ../actions/demo-user-tracking user-modify/S90demo-user-tracking
ln -s ../actions/demo-user-tracking user-delete/S90demo-user-tracking

The S90 prefix ensures that the program will be executed after the standard actions (which typically have pre-
fixes ranging from S15 to S80).

Study this program carefully. It uses many different SME Server capabilities. If invoked from the command
line with no arguments, it will read all user accounts from the user database, fetch all the data fields associated
with each user, and print this information to the log file. If invoked as an event, the SME Server will automatic -
ally pass it the event name and user id as command line arguments; in this case the program will print messages
to the log file explaining that it is adding, modifying, or dropping the user.

Trying watching the log file by running the command:

tail -F /var/log/messages

or with the "View log files" panel in the server-manager. Use the standard SME Server user interface to add,
modify, or remove users. You should see a stream of comments in the log file.

If you were creating an application that had its own database of user information, you would replace the log-
file-writing code with your own code that initialized new users, modified them, etc. Then you would arrange
for the RPM post-install script to execute:

/etc/e-smith/events/actions/demo-user-tracking

with no command line arguments. When the application is initially installed, it will immediately read all users
from the database and set them up in your application. Then, as users are added, modified, or dropped over
time - your code will be invoked each time, to update the application's private user database.

Tip: It is almost always better to extend the existing accounts database with additional properties for your ap -
plication than to maintain another database.

2.4. Exercise 4: Adding new configuration database parameters

New system configuration parameters can be spontaneously invented and added to the configuration database
at any time. For example, let us return to our earlier exercise and parameterize the time interval for the log mes-
sages by introducing a new parameter called LogInterval.

You can write that parameter into the configuration database, as though it had always existed. For example,
type this on the command line:

config set LogInterval 30

You can use config show LogInterval to show that it was set as intended. You can now edit the 25template-
demo file and replace the hardcoded number 20 with the LogInterval parameter. The resulting file will
read:

Template demo crontab entry:
 */{ $LogInterval } * * * * root /usr/bin/logger -t "Demo4" "... {

2013-01-22 RF-232: 0.0.1 41 / 83

SME server Developer's Manual

 use esmith::AccountsDB;

 $adb = esmith::AccountsDB->open_ro;
 $adb->get_prop('admin', 'ForwardAddress');

 } ..."

Now you can change the logger interval at any time by typing the following (replace the number 20 with
whatever logger interval you want):

config set LogInterval 20
expand-template /etc/crontab

This ability to spontaneously introduce new configuration parameters is very important in the SME Server ar-
chitecture. The configuration database is a high-level specification of how the overall system is supposed to be-
have for the end user. Configuration settings are like knobs on a stereo system. The templates, events, and ac-
tions, are the underlying machinery to carry out the user's wishes. When adding a new application to the sys -
tem, it is important to be able to add new knobs on demand.

Now let us say that you want to introduce a parameter to enable or disable this logging function. At this point,
you might start thinking of this logging activity as a service that you should be able to enable or disable. In this
case the convention is to create a single service entry in the configuration database to manage both parameters.

To implement this, first delete the LogInterval parameter, which will no longer be needed:

db configuration delete LogInterval

Now create a service entry:

db configuration set loggerdemo service status enabled Interval 20

If you examine the configuration database you will see the new entry looks like this:

[root@gsxdev1 ~]# config show loggerdemo
loggerdemo=service
 Interval=20
 status=enabled

Note:

By convention, database keys are lower case, and property names are mixed case (e.g. Interval). The
status property is an exception here, and is stored lower case.

Now edit the 25templatedemo file to look like this:

Template demo crontab entry
 {
 my $status = $loggerdemo{status} || "disabled";

 return "# loggerdemo service is disabled."
 unless ($status eq "enabled");

 use esmith::AccountsDB;

 $adb = esmith::AccountsDB->open_ro;
 my $admin_email = $adb->get_prop('admin', 'ForwardAddress')
 || 'admin';

 my $interval = $loggerdemo{Interval} || 10;

42 / 83 RF-232: 0.0.1 2013-01-22

http://wiki.contribs.org/File:Important.png

Create an SME Server package step by step

 $OUT = "*/$interval * * * * root /usr/bin/logger";
 $OUT .= " -t \"Demo4\" \"... $admin_email ...\"\n";
 }

Note:

The variable $OUT is a special variable used for output from a template. It is documented in the
Text::Template documentation. For now, just think about it as the return value from the template,
so set it to the value you want to print from this fragment. Note also that a template fragment can return
static text without setting $OUT directly, as shown on the return line above.

This is more complicated than the original template, but it is also more flexible. Note that the initial comment
(# Template demo crontab entry) is hardcoded, but the line that follows is generated from the configuration
database parameters. The code in the template retrieves the loggerdemo service entry, retrieves the required
properties, and returns the appropriate output. To experiment, try different combinations of parameters:

db configuration setprop loggerdemo Interval 10
expand-template /etc/crontab

and

config setprop loggerdemo status disabled
expand-template /etc/crontab

and so on.

2.5. Exercise 5: Adding a user interface screen

Let us add a nice user interface screen to adjust the logger interval. Create a new file called /etc/e-
smith/web/functions/loggerdemo, with the following contents:

#!/usr/bin/perl -wT
 # vim: ft=xml:

 #--
 # heading : Demo
 # description : Logger
 # navigation : 1000 1000
 #--

 use strict;
 use warnings;

 use esmith::FormMagick::Panel::loggerdemo;

 my $f = esmith::FormMagick::Panel::loggerdemo->new();
 $f->display();

 __DATA__
 <form
 title="FORM_TITLE"
 header="/etc/e-smith/web/common/head.tmpl"
 footer="/etc/e-smith/web/common/foot.tmpl">

 <page name="First" pre-event="print_status_message()"
 post-event="change_settings">

 <field
 type="select"
 id="loggerdemo_Interval"

2013-01-22 RF-232: 0.0.1 43 / 83

http://wiki.contribs.org/File:Important.png

SME server Developer's Manual

 options="10,20,30,40,50"
 value="get_interval()">
 <label>LABEL_LOGGERDEMO_INTERVAL</label>
 </field>

 <field
 type="select"
 id="loggerdemo_status"
 options="'disabled' => 'DISABLED', 'enabled' => 'ENABLED'"
 value="get_status()">
 <label>LABEL_LOGGERDEMO_STATUS</label>
 </field>

 <subroutine src="print_button('SAVE')" />
 </page>
 </form>

The file above describes the panel layout, which is written in FormMagick XML. Further details about Form-
Magick can be found in the Section called An overview of FormMagick in Chapter 10.

Another file provides the implementation, which goes into
/usr/lib/perl5/site_perl/esmith/FormMagick/Panel/loggerdemo.pm:

#!/usr/bin/perl -w
 package esmith::FormMagick::Panel::loggerdemo;

 use strict;
 use warnings;
 use esmith::ConfigDB;
 use esmith::FormMagick;

 our @ISA = qw(esmith::FormMagick Exporter);

 our @EXPORT = qw();

 our $VERSION = sprintf '%d.%03d', q$Revision: 1.1 $ =~ /: (\d+).(\d+)/;

 our $db = esmith::ConfigDB->open or die "Couldn't open ConfigDB\n";

 sub get_status
 {
 return $db->get_prop("loggerdemo", "status");
 }

 sub get_interval
 {
 return $db->get_prop("loggerdemo", "Interval");
 }

 sub change_settings
 {
 my $fm = shift;
 my $q = $fm->{'cgi'};

 $db->set_prop('loggerdemo', 'status', $q->param("loggerdemo_status"));
 $db->set_prop('loggerdemo', 'Interval', $q->param("loggerdemo_Interval"));

 unless (system ("/sbin/e-smith/expand-template", "/etc/crontab") == 0)
 {
 $fm->error('ERROR_UPDATING');
 return undef;
 }

 $fm->success('SUCCESS');

44 / 83 RF-232: 0.0.1 2013-01-22

http://wiki.contribs.org/The_SME_Server_Developer's_Guide#FORMMAGICKOVERVIEW
http://wiki.contribs.org/The_SME_Server_Developer's_Guide#FORMMAGICKOVERVIEW
http://wiki.contribs.org/The_SME_Server_Developer's_Guide#FORMMAGICKOVERVIEW

Create an SME Server package step by step

 }

 1;

Note:

This code example calls expand-template. This is used for illustrative purposes only. All templates
should be expanded by signalling events.

Similarly to events and actions, the /etc/e-smith/web/functions/ directory is a repository of poten-
tially available functions. To make the new function actually show up in the user interface, create a symbolic
link to it from the web manager cgi-bin directory, as follows:

 cd /etc/e-smith/web/panels/manager/cgi-bin
 ln -s ../../../functions/loggerdemo loggerdemo

Now, make sure the permissions and ownership are correct so that the web server can run your new function:

cd /etc/e-smith/web/functions
chown root:admin loggerdemo
chmod 4750 loggerdemo

We also need to run a program to rebuild the navigation bar. This is only required when adding or removing
functions from the manager, and is normally handled automatically. Let's do it manually for now:

/etc/e-smith/events/actions/navigation-conf

Try the server manager now, reloading the navigation bar in your browser, if necessary. You will see a new cat-
egory called Demo and a new function within it called Logger. It will look a bit bare with some upper-case
words which signify phrases which have not been localized. We'll fix that in a moment.

Try experimenting with it - it is a nice little user interface for playing with the logger customization. Every time
you change the settings, notice that the /etc/crontab file is updated appropriately.

2.5.1. Adding localizations

The SME Server is designed to support localization into any language. This is done by small files which de -
scribe the mapping from the upper case tags (seen above) to the appropriate words for the local language. Enter
the following into /etc/e-smith/locale/en-us/etc/e-smith/web/functions/loggerdemo

<lexicon lang="en-us">

 <entry>
 <base>FORM_TITLE</base>
 <trans>Logger demo</trans>
 </entry>

 <entry>
 <base>Demo</base>
 <trans>Demo</trans>
 </entry>

 <entry>
 <base>Logger</base>
 <trans>Logger</trans>
 </entry>

2013-01-22 RF-232: 0.0.1 45 / 83

http://wiki.contribs.org/File:Important.png

SME server Developer's Manual

 <entry>
 <base>LABEL_LOGGERDEMO_STATUS</base>
 <trans>Status</trans>
 </entry>

 <entry>
 <base>ENABLED</base>
 <trans>Enabled</trans>
 </entry>

 <entry>
 <base>DISABLED</base>
 <trans>Disabled</trans>
 </entry>

 <entry>
 <base>SAVE</base>
 <trans>Save</trans>
 </entry>

</lexicon>

Now, re-select the Logger function and the tags should now be replaced by English phrases. We can very easily
add translations for other languages by adding new locale files in the same hierarchy.

Note:

The LABEL_LOGGERDEMO_INTERVAL tags has intentionally been left untranslated. Why don't you
fix it now?

2.6. Exercise 6: Adding a new event type

Let us continue building on this example. Let us say that you want to add a hook to the logger demo, enabling
other third party applications to receive a notification whenever the logger settings are changed. We need a new
event type for this. Let us create a new event called loggerdemo-update:

mkdir -p /etc/e-smith/events/loggerdemo-update

The idea is that we will arrange for our user interface function to signal this new event whenever the settings
are changed, instead of directly expanding the /etc/crontab file. Edit the
/usr/lib/perl5/site_perl/esmith/FormMagick/Panels/loggerdemo.pm file and replace
the line:

unless (system ("/sbin/e-smith/expand-template", "/etc/crontab") == 0)

with the line:

unless (system ("/sbin/e-smith/signal-event", "loggerdemo-update") == 0)

Now the loggerdemo user interface signals the new event whenever it saves the new settings to the configura -
tion database. Next, we have to make sure that the event does what we need it to do - rebuild the
/etc/crontab file.

cd /etc/e-smith/events/loggerdemo-update
mkdir -p templates2expand/etc
touch templates2expand/etc/crontab

46 / 83 RF-232: 0.0.1 2013-01-22

http://wiki.contribs.org/File:Important.png

Create an SME Server package step by step

Now the example should work just as before. You can edit the loggerdemo settings in the web manager, and see
that the /etc/crontab file changes. But now other applications can also receive notifications of the logger-
demo-update event, by creating symbolic links from the /etc/e-smith/events/loggerdemo-up-
date directory.

Note:

Panel implementation code should always signal events, and should never expand templates or modify
files directly. These modifications should only be performed in events.

2.7. Exercise 7: Thought experiment - adding a new server application

You have now learned most of the machinery required for integrating a new server application into the SME
Server. Consider a hypothetical chat server, with a configuration file called /etc/chatserv.conf.

You would first decide if the chat server needs any new settings. If so, you can create a new service entry in the
configuration database to hold those settings.

You would then create a templated version of /etc/chatserv.conf, by creating the directory /etc/e-
smith/templates/etc/chatserv.conf with at least one template fragment. The template should
generate the correct version of /etc/chatserv.conf based on the configuration database settings. Experi-
ment with different combinations of settings and manually running expand-template /etc/chatser-
v.conf.

Then create a web manager function (if one is required) enabling users to edit the settings. An event, for ex -
ample chatserv-update should be signalled whenever the settings are changed. You would normally link into an
existing event, but this is a thought experiment.

Then create the file /etc/e-smith/events/chatserv-
update/templates2expand/etc/chatserv.conf to ensure that the configuration file is updated.
You may also need to restart the chatserv program after changing its configuration, so you'll need a /etc/e-
smith/events/chatserver-update/services2adjust/chatserv link which contains the
word restart.

Finally, figure out when you'll need these scripts to be run. At a minimum, you'll want to run them whenever
the event is signalled indicating that the user has saved new settings from the web manager. A symbolic link
should be created, so that the new event triggers your new action scripts. Let's say you also need to reconfigure
and restart your server each time a user is added. In that case, you would also create symlinks from the user-
create event to your action scripts.

We are done - the new server has been integrated into the system. Note that every single one of these steps in -
volved creating new files and directories, and reading/writing from the configuration database. No existing files
were edited! You can easily imagine packaging these new files and directories into an RPM.

2.8. Customization guidelines

When creating applications:

 You can create new configuration parameters.
 You can add new configuration templates under /etc/e-smith/templates/.
 You can add fragments to any of the existing templates under /etc/e-smith/templates/.
 You can arrange for actions to be triggered upon package pre-install, post-install, pre-uninstall, or post-un-

install.
 You can link new actions into the events listed in Chapter 7.

2013-01-22 RF-232: 0.0.1 47 / 83

http://wiki.contribs.org/SME_Server:Documentation:Developers_Manual:Chapter7#Standard_events_and_their_arguments
http://wiki.contribs.org/File:Important.png

SME server Developer's Manual

 You can create new events to allow your feature set to be expanded. Do not create events for any other
reason. They are not a replacement for function calls.

 You can arrange for new server programs to be started up at boot time.
 Typically you would expand a template at application post-install time, application post-uninstall time, and

one or more of the other events.
 You can add new web functions to the navigation bar. Remember, panels should only retrieve and modify

database values, perform validation, and signal events.
That is all! Applications should not make any extensions to the system other than these. For example, an ap-
plication should not:

 Change the kernel or add new kernel modules.
 Edit configuration files directly - templates must be used.
 Link actions into any events other than the ones listed above or new events that you create. All built-in

events other than the ones listed above are subject to change without notice in new SME Server releases.
 Directly access the per-user email store (i.e. the Maildir and related subdirectories within each user's home

directory). This access should be performed via the IMAP server as the location and format of a user's
home directory may change between releases.

 Take over the function of existing servers (i.e. shut down qmail and Apache and take over ports 25 and 80).
The SME Server has features for proxying email and web requests to other servers on the system.

Do not expand templates at boot time. The only thing that should be happening during a normal system startup
is to start servers. Templates should be expanded when it is necessary to change the system configuration (i.e.
when a setting is changed, when the IP address changes, etc.) A normal shutdown or reboot should not trigger
configuration changes. The bootstrap-console-save event will be run after a system reconfiguration, but will not
run if the system does not require reconfiguration.

3. Packaging your application

Once you have created a customization for your SME Server by adding new files, directories, and symbolic
links (for your actions, events, etc.) - and perhaps also triggering an action to initialize your customization -
you are ready to package your customization into an RPM.

3.1. A quick introduction to RPMs

All SME Server software packages are distributed as RPM packages. This is the format used by CentOS and
other major Linux distributions for distributing applications and other collections of files. The RPM system
provides the ability to install, upgrade, remove and (importantly) verify the contents of installed packages.

An RPM essentially consists of an archive of all the files required by a piece of software. Additionally, it in -
cludes meta-information describing the software, and scripts which must be run to install or uninstall the soft-
ware.

Meta-information stored in an RPM includes:

1. summary and description of the software
2. package name
3. version number
4. copyright information
5. category/group to which the software belongs
6. name and email address of the packager
7. pre-requisites to installing this package
8. ... and more

3.2. Selecting and creating RPMs for your application

Your application will typically depend on several components:

1. Software packages that are shipped as a standard part of the SME Server. You do not need to include any

48 / 83 RF-232: 0.0.1 2013-01-22

Create an SME Server package step by step

of these packages; they are always present in the runtime environment.
2. Software packages that are not a standard part of the SME Server, but that are required by your software,

and would also be of general use in the runtime environment. For example: a Java runtime environment,
libraries that enable communication with devices, etc. If possible, these packages should be made into sep-
arate packages, rather than being included in your application. This makes it easier to share them with
other applications and enforces version compatiblity.

3. Software packages that are not a standard part of the SME Server, and that are specific to your software
application (i.e. not generally useful in the runtime environment). This is the raw Linux version of your ap-
plication without any specific SME Server integration code. For example, if your application is already
available for Linux in the form of RPMs - these RPMs are what we are referring to. These are referred to
as the application RPMs.

4. Any new files that you have created specifically in order to integrate your application into the SME Server
runtime environment - should be packaged into a single RPM, as explained in the next section. This is re-
ferred to as the integration RPM.

So, if your application is based on Linux software that has already been packaged into RPMs, then you will
need to create one new RPM:the integration RPM.

If, on the other hand, your application is based on Linux software that has not yet been packaged into RPMs,
then you will probably need to create at least two RPMs: one or more application RPMs, and the integration
RPM.

Finally, for simple customizations (such as the loggerdemo example earlier in this manual) there may be no ap-
plication RPM at all. This would be typical if the point of the application is to change the server configuration
without really adding a new software package. In this case you need only the integration RPM which contains
the new template fragments, user interface screens, etc..

All files on the system, except for user data, must be installed by RPMs.

3.3. Setting up your RPM development environment

Outdated:

The information on this page maybe no longer relevant.

If you haven't done so already, set up an RPM development environment. If you are using an SME Server as
your development environment, you will need to alter your user account to enable regular login. If you want to
enable account "joe", then you would type the following commands from the root account:

chsh -s /bin/bash joe

db accounts setprop joe Shell /bin/bash

Note:

Shell/login access is disabled by default to enhance the security of the SME Server. Shell access should
only be provided to users who require it and who can be trusted to maintain system security.

Then you should be able to log in to the server as user "joe", and get a Linux command line prompt. Log in,
then type the following commands to set up your RPM work area:

cd ~/
mkdir -p rpms/{SRPMS,BUILD,SOURCES,SPECS,RPMS,lib}
mkdir -p rpms/RPMS/{i386,noarch}
echo "%_topdir $HOME/rpms" > ~/.rpmmacros

2013-01-22 RF-232: 0.0.1 49 / 83

http://wiki.contribs.org/File:Time.png
http://wiki.contribs.org/File:Important.png

SME server Developer's Manual

You will now find that you have a directory called rpms in which you will do your work. Under this are the
following subdirectories:

SOURCES
The base material from which RPMs are built -- source code, tarballs, etc.

BUILD
Working area used by the rpmbuild program during RPM creation

SPECS
Specification files for building RPMs

SRPMS
Source RPMS (created by build process)

RPMS
Binary RPMS (created by build process). Has subdirectories noarch and i386 for architecture independent
and x86 platforms respectively.

As you prepare software to turn into RPMs, you will place files in these directories as appropriate. The follow -
ing sections will describe what goes where as each item is covered.

Tip: As you start work on an RPM for version x.y.z of a package, create a sub-directory
rpms/SOURCES/yourpackage-x.y.z/ to work in.

mkdir rpms/SOURCES/yourpackage-x.y.z

Under this directory there should be a sub-directory called root, under which is an image of the file hierarchy
that will be installed by the RPM.

mkdir rpms/SOURCES/yourpackage-x.y.z/root

3.4. Building an RPM

Outdated:

The information on this page maybe no longer relevant.

This section describes the process for building an RPM - step by step.

Choose a name and version number for your package. We are going to package the complete loggerdemo ex-
ample and will use loggerdemo and 1.0.0 as the name and version number.

Collect all of the files which have been created in the previous sections into the /tmp/ directory. There is one
additional file createlinks which looks like this:

#!/usr/bin/perl -w

use esmith::Build::CreateLinks qw(:all);
use File::Basename;

my $panel = "manager";

panel_link("loggerdemo", $panel);

50 / 83 RF-232: 0.0.1 2013-01-22

http://wiki.contribs.org/File:Time.png

Create an SME Server package step by step

Create the directory hierarchy required for building the RPM. This is very close to the hierarchy on the in -
stalled system.

Change to the SOURCES directory
cd ~/rpms/SOURCES

Remove old files (check that you don't need anything here!)
rm -rf loggerdemo-1.0.0

Create new directory
mkdir loggerdemo-1.0.0
cd loggerdemo-1.0.0

The crontab template fragment
mkdir -p root/etc/e-smith/templates/etc/crontab
cp /tmp/25templatedemo root/etc/e-smith/templates/etc/crontab

The web panel description
mkdir -p root/etc/e-smith/web/functions
cp -p /tmp/loggerdemo !$

The web panel implementation
mkdir -p root/usr/lib/perl5/site_perl/esmith/FormMagick/Panel
cp -p /tmp/loggerdemo.pm !$

The web panel English localisation
mkdir -p root/etc/e-smith/locale/en-us/etc/e-smith/web/functions
cp -p /tmp/loggerdemo-en !$

The createlinks auxiliary file
cp -p /tmp/createlinks .

The DB fragments should be created as files
mkdir -p root/etc/e-smith/db/configuration/defaults/loggerdemo
echo "service" > !$/type
echo "enabled" > !$/status
echo "10" > !$/Interval

Your directory structure should now look like this:

[gordonr@sevendev1 loggerdemo-1.0.0]$ find . -type f
./root/etc/e-smith/templates/etc/crontab/25templatedemo
./root/etc/e-smith/locale/en-us/etc/e-smith/web/functions/loggerdemo
./root/etc/e-smith/web/functions/loggerdemo
./root/usr/lib/perl5/site_perl/esmith/FormMagick/Panel/loggerdemo.pm
./root/etc/e-smith/db/configuration/defaults/loggerdemo/{type|status|Interval}
./createlinks

Package the directory into a tarball: cd ~/rpms/SOURCES

tar zcvf loggerdemo-1.0.0.tar.gz loggerdemo-1.0.0

Create the RPM specification "SPEC" file ~/rpms/SPECS/loggerdemo.spec which looks like this:

%define name loggerdemo
%define version 1.0.0
%define release 01

Summary: SME Server logger demo
Name: %{name}
Version: %{version}
Release: %{release}
License: GPL

2013-01-22 RF-232: 0.0.1 51 / 83

SME server Developer's Manual

Group: Networking/Daemons
Source: %{name}-%{version}.tar.gz
Packager: Fred Frog <red@example.com>
BuildRoot: /var/tmp/%{name}-%{version}-%{release}-buildroot
BuildArchitectures: noarch

%description
Logger Demo sample application.

%changelog
* Thu Feb 2 2006 Fred Frog <fred@example.com>
- 1.0.0-01
- Original version

%prep
%setup

%build
perl createlinks

%install
rm -rf $RPM_BUILD_ROOT
(cd root ; find . -depth -print | cpio -dump $RPM_BUILD_ROOT)
rm -f %{name}-%{version}-filelist
/sbin/e-smith/genfilelist $RPM_BUILD_ROOT > %{name}-%{version}-filelist

%clean
rm -rf $RPM_BUILD_ROOT

%post
/sbin/e-smith/expand-template /etc/crontab
true

%postun
/sbin/e-smith/expand-template /etc/crontab
true

%files -f %{name}-%{version}-filelist
%defattr(-,root,root)

Note the %post (post-installation) and %postun (post-uninstallation) statements which expand the
/etc/crontab template after installing or uninstalling the RPM.

Check that your RPM will build OK with "build prepare":

cd ~/rpms/SPECS
rpmbuild -bp loggerdemo.spec

The last line of output should be + exit 0 if rpmbuild is successful.

Run the rpmbuild command again to actually create your RPM with the "build all" options:

rpmbuild -ba loggerdemo.spec

If everything was successful, the last line of output should again be + exit 0.

The RPMs should have been generated and put into ~/rpms/RPMS/noarch/ as this program can run
equally well on any platform. A source RPM should also exist in ~/rpms/SRPMS/.

Test your RPM by installing it on an SME Server test box.

Note:

52 / 83 RF-232: 0.0.1 2013-01-22

http://wiki.contribs.org/File:Important.png

Create an SME Server package step by step

RPMs need to be installed as root, but you should not log in as the root user. Instead, you should create a
normal user and provide them with 'root' privileges via the sudo command. To provide full sudo rights
to the user joe, use the su - -c /usr/sbin/visudo and add the following line to the end of the file: joe
ALL=(ALL) ALLYou can then use the sudo to run commands as root when required. You will be
prompted for your password (not the root password) which ensures that someone else isn't using your
terminal.

sudo yum localinstall ~/rpms/RPMS/noarch/loggerdemo-1.0.0-01.noarch.rpm
Preparing... ### [100%]
 1:loggerdemo ### [100%]
Migrating existing database mailpatterns
Migrating existing database hosts
Migrating existing database configuration
Migrating existing database yum_repositories
Migrating existing database networks
Migrating existing database yum_updates
Migrating existing database yum_installed
Migrating existing database spamassassin
Migrating existing database accounts
Migrating existing database backups
Migrating existing database yum_available
Migrating existing database domains

The customization should be fully installed, and the /etc/crontab file should show the customization.

Then remove the customization:

sudo rpm -e loggerdemo

The customization should be completely gone, and the /etc/crontab file should look the way it did before.

3.4.1. The createlinks script

The source tarballs of an RPM should not include symbolic links as they are difficult to store under many ver-
sion control systems and cause issues when generating patches. Since the SME Server uses many symbolic
links, there are simple methods for creating the ones required. This is done through the createlinks script
which is called from the %build section of the SPEC file. Let's examine one. It starts with the standard Perl
script header and an import of the required module:

#!/usr/bin/perl -w

 use esmith::Build::CreateLinks qw(:all);

The templates2events function can be used to create the appropriate templates2expand links in various
events:

my $imap = "/var/service/imap";
my $imaps = "/var/service/imaps";

templates2events("/etc/dovecot.conf", qw(bootstrap-console-save console-save));
templates2events("$imap/config", qw(bootstrap-console-save email-update));
templates2events("$imaps/config", qw(bootstrap-console-save email-update));

Note that the first argument is a filename and the second argument is a list of events in which to create the link.
The safe_symlink function can be used to create a generic symbolic link, as well as the directory hierarchy en-
closing that link:

for my $event (qw(

2013-01-22 RF-232: 0.0.1 53 / 83

SME server Developer's Manual

 email-update
 ldap-update
 network-create
 network-delete
))
{
 safe_symlink("sigusr1", "root/etc/e-smith/events/$event/services2adjust/imap");
}

safe_symlink("daemontools", "root/etc/rc.d/init.d/imap");

The event_link function is used to create the links from the event directories to the generic actions directory.
For example:

for my $event (qw(post-upgrade))
{
 event_link("imap-relocate-maildirs", $event, "05");
}

creates a symbolic link S05imap-relocate-maildirs in the post-upgrade event. The target of the symbolic link
will be the imap-relocate-maildirs script in the /etc/e-smith/events/actions/ directory.

Finally, the service_link_enhanced function makes it simple to create the /etc/rc.d/rc7.d and similar
startup symlinks:

service_link_enhanced("imap", "S55", "7");
service_link_enhanced("imap", "K45", "6");
service_link_enhanced("imap", "K45", "0");
service_link_enhanced("imap", "K45", "1");

More documentation on this module can be seen with the command perldoc esmith::Build::CreateLinks.

4. The SME Server development environment

4.1. Configuring your development environment

The SME Server source code is checked into CVS at SourceForge. SME Server code is stored in the CVS on
http://www.sourceforge.net in two repositories:

1) CVS SME Server which holds the core packages of the SME Server

2) CVS SME Contribs which holds the contribs packages

Reminder: The SME Server source code is released under the GPL. You must release the source code to all
modifications. If you make improvements, please raise a bug and attach a patch so the change can be discussed
and pulled back into the base for everyone to share.

Only developers who are going to put patches back into CVS and build new packages need SourceForge CVS
access. The sources are freely available and patches are gratefully received. Just follow the instructions in this
section and attach the patch(es) to the Bugzilla entry, explaining why the change should be made.

4.1.1. Local environment

 Install cvs
yum install cvs

 Setup CVS to use ssh by creating /etc/profile.d/smebuild.sh with the following content
Developer environment
This gets symlinked into /etc/profile.d

54 / 83 RF-232: 0.0.1 2013-01-22

http://fisheye1.cenqua.com/browse/smecontribs/
http://fisheye1.cenqua.com/browse/smeserver/
http://www.sourceforge.net/

Create an SME Server package step by step

export CVS_RSH=ssh # tell CVS to use ssh

DO NOT set CVSROOT

alias rm='rm -i'
alias cp='cp -i --preserve=timestamps'
alias mv='mv -i'

You have to logout and login again to the console for changes to take effects.

4.1.2. Access to build system

Check updates/status on the build server: http://buildsys.contribs.org.

Warning:

For contrib builders using the plague-client-0.5.0 you will need to downgrade to correct version, to fix
this please do:

rpm -e plague-client plague-common
yum --enablerepo=smecontribs install plague-client

Ask admin@contribs.org for certificates, give the email address to use for notifications.

yum --enablerepo=smecontribs install plague-client

From now, do not use account "root" anymore. Use a dedicated dev account. Copy certificates and config file
to ~/

.plague-client.cfg

.username.pem

.contribs-upload-ca.pem

.contribs-server-ca.pem

Don't forget to set the proper privileges on the file

chmod 600 .username.pem

Check it's working

plague-client list_builders

Builders:
--
 build64-1.contribs.org x86_64 amd64 ia32e noarch i386 i486 i586 i686 athlon available
 build32-1.contribs.org i386 i486 i586 i686 athlon noarch available

4.1.3. Sourceforge access

 SME Server code is stored in the CVS on http://SourceForge.net. To be able to work on your code in the
SME Server CVS repository you need an account on SourceForge. With this account the development
team can give you access to the CVS repository. More information can be found here:

B04: Registering a User Account
E04: CVS (Version Control for Source Code)
F02: SSH Key Generation and Usage

2013-01-22 RF-232: 0.0.1 55 / 83

http://sourceforge.net/docs/F02/en/#top
http://sourceforge.net/docman/display_doc.php?docid=29894&group_id=1
http://sourceforge.net/docman/display_doc.php?docid=11123&group_id=1
http://SourceForge.net/
http://buildsys.contribs.org/
http://wiki.contribs.org/File:Warning.png

SME server Developer's Manual

 After you have created your SourceForge account you can ask the development team to give you developer
access to smecontribs. Create a bug in the Bug Tracker as usual.

 Copy your local public SSH key to SourceForge https://sourceforge.net/account/editsshkeys.php

 If local username is different to sf.net username edit ~/.ssh/config:

Host smeserver.cvs.sourceforge.net
User sfusername (without @shell.sf.net)
Host smecontribs.cvs.sourceforge.net
User sfusername (without @shell.sf.net)

 Don't forget to set the proper privileges on the file

chmod 600 ~/.ssh/config

4.1.4. Import source to sourceforge

Email admin@contribs.org with the location of your rpm, it will be imported into the build system for you. Fol-
low the same procedure when an upstrean release occurs, eg a new .tar.gz, Update your local cvs with:

cvs update -dPA

4.1.5. Import cvs in your workspace

You can use ~/home/smeserver or whatever suits.

mkdir ~/home/smeserver
cd ~/home/smeserver
cvs -z3 -d:ext:smeserver.cvs.sourceforge.net:/cvsroot/smeserver co -P rpms
mkdir ~/home/smecontribs
cd ~/home/smecontribs
cvs -z3 -d:ext:smecontribs.cvs.sourceforge.net:/cvsroot/smecontribs co -P rpms

To refresh run the following from the rpms directory, or any lower directory with a CVS dir

cvs update -dPA

4.2. Modifying a SME Server package

4.2.1. Raise a Bugzilla entry

Before you make any changes to a package, you need to have a Bugzilla entry which specifies the problem and
preferably proposes a fix. Raising the bug before you do the work allows others to comment on the proposed
approach and can save significant time when you go to submit the changes. The change should also be ap -
proved by the Development Manager if it is meant for near-term release. You will need the Bugzilla bugid
when you check in the changes.

All changes must have an associated Bugzilla entry. The bug tracker is here: http://bugs.contribs.org/

If a relevant bug does not exist, raise one. If the bug exists, assign it to yourself to show that you are working
on it:

For this exercise, let's look at bug 1174 "yum-import-keys should not import duplicates" http://bugs.contrib-
s.org/show_bug.cgi?id=1174.

56 / 83 RF-232: 0.0.1 2013-01-22

http://bugs.contribs.org/show_bug.cgi?id=1174
http://bugs.contribs.org/show_bug.cgi?id=1174
http://bugs.contribs.org/
https://sourceforge.net/account/editsshkeys.php

Create an SME Server package step by step

4.2.2. Modify the package

If you are modifying an existing file, the simplest way to determine the package is to install the relevant ver -
sion and run rpm -qf on the file to be modified:

[gordonr@smebuild actions]$ rpm -qf /etc/e-smith/events/actions/yum-import-keys
smeserver-yum-1.1.2-05

and so, we want to modify the smeserver-yum package.

All packages on the SME Server ISO/CD must be checked into SourceForge CVS. The only exceptions are
packages which come from the following upstream repositories: CentOS and dag.

You can now retrieve one of the packages from SourceForge. In this case, we want to modify the smeserver-
yum package, so let's retrieve it from SourceForge:

Change to work directory

cd smeserver/rpms/smeserver-yum/sme7

To prepare a tree

cvs update -dPA
make clean
make prep

Make a patch

Then switch to the tree and make modification.

Method A

In the prepared dir copy a file you want to modify like so:

cp yum-import-keys yum-import-keys.{patchname}

Then modify the original file yum-import-keys. To add new files touch yum-import-keys.{patchname} so it is
empty.

Once you have all the files you want patched copied and changed then you can build the patch (from the sme7
dir) with:

make patch SUFFIX={patchname}

It will build and add the patch for you. It should be named "name-version-{patchname}.patch"

Method B

Make a copy of the prepared directory, edit directly, then make a patch

cp -R smeserver-yum-2.0.0 smeserver-foo-2.0.0.old
diff -urN smeserver-foo-2.0.0.old smeserver-yum-2.0.0 > smeserver-yum-2.0.0-importKeys.patch

Apply a patch

For example, check if a translation patch is available:

 for SME Server base

 for SME Server contribs

If patch size is 0 bytes there is nothing to do

Else go to the package folder in your tree and do :

wget http://translate.contribs.org/patches/contribs/{name}-locale-{date}.patch

2013-01-22 RF-232: 0.0.1 57 / 83

http://translate.contribs.org/patches/contribs/%7Bname%7D-locale-%7Bdate%7D.patch
http://translate.contribs.org/patches/contribs/
http://translate.contribs.org/patches/

SME server Developer's Manual

cvs add {name}-locale-{date}.patch

Then you need to follow instructions in next part....

You may add yourself some translations , and wait for patch to be created (at about 2 AM GMT-6, or 6 PM
Sydney)

Edit the spec

nano -w smeserver-foo.spec
#increase the release
%define release 15

#add the patch
Patch2: smeserver-foo-1.2-widget.patch

#update the changelog, include the bug number
* Fri Jan 11 2008 John Smith <smith@foo.net> 1.2-15
- fixed foo to create bar [SME 3470]

#apply the patch in %setup
%patch2 -p1

Commit

Build the rpm locally to test, (note, this deletes the working tree!)

make local

Once you are satisfied and want to submit the package to the build server commit your changes. (Please use de-
scriptive comments so that other developers are aware of what is happening. Comments will appear on the sub-
ject line of the commit email that get send to the other developers.)

cvs commit -m 'your descriptive commit message here'

You can automate the addition of the comments in the spec file with the command 'clog'.

Note:

You will need to be in the sme7, sme8, or contribs7 directory for this to work

rm -f clog
cvs commit -m "$(make clog)"

CVS cheat sheet Package_Modification/More cvs commands

Build

Tag all files as belonging to a particular build version

make tag

Submit the request to the build server which will checkout the recently tagged version and build it

make build

Always do "make tag" before "make build"

Always ensure you are working with the latest version (cvs update -dPA)

58 / 83 RF-232: 0.0.1 2013-01-22

http://wiki.contribs.org/Package_Modification/More_cvs_commands
http://translate.contribs.org/
http://wiki.contribs.org/File:Important.png

Create an SME Server package step by step

You and updatesteam will get an email on successful build. Only you will get an email on failed build.

You can check the build system is working:

 https://buildsys.contribs.org/plague
 or in shell

plague-client list uid {task number}

4.2.3. Releasing a contrib package

After the make build command the build system will try and build your package. After a successful build it will
be put in the smetest repository. You should be notified of the result of the build by e-mail.

Once a package is build successfully you should verify your changes, ideally you would have a bug to verify
for each modification. After verification of all relevant changes and bugs you can release the package like this:

Login to shell.contribs.org like this:
ssh username@shell.contribs.org

Navigate to the teams directory:
cd /teams

The teams directory contains a few directories of which two are relevant, the first is called updates which will
hold the SME Server packages, the other is called contribs and will hold build contribs.

Suppose we would like to release our contrib we would proceed like this:

cd contribs/7

Now copy the relevant package from smetest to smecontribs, old versions are removed automatically
cp smetest/package-name-version.rpm smecontribs/

Note:

Within a period of two hours the package should be moved to the smecontribs repository and be avail-
able as soon as the mirrors synchronize.

Once the server successfully builds it will automatically be pulled on the next repo update run (40 past the even
hours MDT). The package will either be put into the smedev (new package) or smetest (exist in higher repo)
After verification the package is manually moved from smedev/smetest to smecontribs (for contribs) or smeup-
dates-testing (for packages in base)

4.3. Mailing Lists

Subscribe yourself to the devinfo mailinglist. This is the place to discuss the development of the server and
contribs. If you have other questions, not regarding development please use the forums.

2013-01-22 RF-232: 0.0.1 59 / 83

http://forums.contribs.org/
http://lists.contribs.org/mailman/listinfo/devinfo
https://buildsys.contribs.org/plague
http://wiki.contribs.org/File:Important.png

SME server Developer's Manual

V- Advanced customization of the SME Server

1. Advanced customization principles

1.1. Leveraging the provisioning system for users, groups, and i-bays

One of the themes in the SME Server is that concepts such as users, groups, and shared information (informa -
tion bays) are simplified and reused in the user interface. SME Server users are email users, filesharing users,
web users and users for any other sofware installed on the system.

For example, in the user interface you can create an information bay called salesdata representing information
of interest to the sales team. Creating the information bay automatically reconfigures Samba and Netatalk to
share salesdata as a new shared folder, reconfigures Apache to present

http://www.example.com/salesdata/

as a new part of the web site, and reconfigures the FTP server - so that the information can be accessed by log-
ging in as user salesdata.

Another example of this type of concept-reuse is that you can create a group called marketing that will, among
other things, create an email alias called marketing to automatically forward email to all the group members.
This group can also be used as a unit of information-sharing.

In order to enable this concept-reuse, there are certain namespace restrictions. You cannot have a user account
and an information bay with the same name - since there would be ambiguity when logging into the FTP
server. You cannot have a user account and a group with the same name either - since there would be ambiguity
when sending email to the server.

To enforce these restrictions, the SME Server defines a concept of account. Users, groups, and information
bays are all different types of account. No two accounts can have the same name. The account list is maintained
in the accounts database.

Whenever a user, group, or information bay is created, the following steps are performed automatically by the
SME Server:

1. Check if there is an existing account (of any type) with the same name. If so, display an error and termin-
ate.

2. If there was no error, then create a new accounts database entry. The entry contains the name of the ac-
count, its type (e.g. user, group, ibay), and all associated properties.

3. Signal the create event for that account type - user-create, group-create, ibay-create, and so on.
4. The actions for that event will then do all the work to set up the account - creating underlying user ac-

counts if necessary, creating groups and directories, reconfiguring services, and so on.
The SME Server supports the following account types:

60 / 83 RF-232: 0.0.1 2013-01-22

http://www.example.com/salesdata/

Advanced customization of the SME Server

SME Server Account Types

Account type Purpose

User Individual users of the system with local email accounts, home directories, etc.

Group
A list of users. All applications which require a list of users should use the standard SME
Server group mechanism. They should extend the properties of the group, if required, but
should not create additional group types - group lists, work groups, etc.

Information
bay

A shared storage area - shared folder, intranet, extranet, etc.

System Any account name that is reserved by the SME Server for internal use.

URL Any sub-directory of the primary web site (e.g. "webmail")

Pseudonym Any email alias for a user or group

Printer Any shared printer

When creating applications, you should always try to make use of the built-in SME Server account types. If
your application has any concept of users, groups, or shared data - try to make your application use the built-in
SME Server mechanisms for all of these.

1.2. Programmatically creating users, groups, and i-bays

You can create users, groups, and i-bays by creating database defaults, or through code. Refer to the userac-
counts, groups and ibays panels for examples of how to create these items. You can also create accounts with
simple shell scripts.

For example, here is a shell script to create a user (account "abc", name "Albert Collins"):

#!/bin/sh

 PATH=/sbin/e-smith:$PATH

 if db accounts get abc >/dev/null
 then
 echo "abc already exists in the accounts database"
 db accounts show abc
 exit 1
 fi

 db accounts set abc user PasswordSet no
 db accounts setprop abc FirstName Albert
 db accounts setprop abc LastName Collins
 db accounts setprop abc EmailForward local

 signal-event user-create abc

Note that we could have provided all of the properties to the set command and created the record in one step.
Here's the same example using the Perl libraries

#!/usr/bin/perl -w

 use strict;
 use warnings;
 use esmith::AccountsDB;

 my $db = esmith::AccountsDB->open or die "Couldn't open AccountsDB\n";

 my $abc = $db->get("abc");

2013-01-22 RF-232: 0.0.1 61 / 83

SME server Developer's Manual

 if ($abc)
 {
 die "abc already exists in the accounts database\n" .
 $abc->show . "\n";
 }

 $db->new_record("abc",
 {
 type => 'user',
 PasswordSet => 'no',
 FirstName => 'Albert',
 LastName => 'Collins',
 EmailForward => 'local',
 });

 unless (system("/sbin/e-smith/signal-event", "user-create", "abc") == 0)
 {
 die "user-create abc failed\n";
 }

 exit 0;

1.3. Reserving accounts to avoid conflicts with user, group, or i-bay names

If your application creates a new directory within your web site e.g. http://www.example.com/magic-
stuff/, you should make sure the name isn't also used for an information bay, since that would create a con-
flict. Simply reserve the name by creating a urlaccount. This can be done by creating a defaults file:

cd /etc/e-smith/db/accounts/defaults/

mkdir magicstuff
cd magicstuff

echo url >type

If you package the file in your RPM, the account will be created automatically. To test your change before
packaging, you'll need to tell the SME Server to reconfigure the databases:

/etc/e-smith/events/actions/initialize-default-databases

db accounts show magicstuff

1.4. Adding new account properties

Just as you can spontaneously introduce new configuration settings you can spontaneously introduce new prop-
erties as well.

Note:

You should not create new options for existing properties. For example, if the server-manager can only
set three possible values, you should not invent a fourth one. Use another property and raise a bug to
suggest the required changes.

For example, let's say that your application needs a concept of cell phone number stored for each user account.
This is not a standard property in the SME Server. Your application can simply choose a name for the new
property, e.g. CellNumber, and immediately start reading and writing that property for the various users - as
though the property had always existed.

62 / 83 RF-232: 0.0.1 2013-01-22

http://www.example.com/magicstuff/
http://www.example.com/magicstuff/
http://wiki.contribs.org/File:Important.png

Advanced customization of the SME Server

If you read from a non-existant property, an empty string is returned for shell scripts and the undef value is re-
turned when using the Perl interfaces. If you write to a non-existent property, it is spontaneously created in the
accounts database.

Here is an example of a user interface screen which allows you to edit cell phone numbers for each user ac-
count. As before, the form descriptions goes in /etc/e-smith/web/functions/cellnumbers :

#!/usr/bin/perl -wT
 # vim: ft=xml ts=4 sw=4 et:
 #--
 # heading : Collaboration
 # description : Cell numbers (fm)
 # navigation : 3000 3150
 #--
 use strict;
 use esmith::TestUtils;
 use esmith::FormMagick::Panel::cellnumbers;

 my $fm = esmith::FormMagick::Panel::cellnumbers->new();

 $fm->display();

 __DATA__
 <form title="FORM_TITLE"
 header="/etc/e-smith/web/common/head.tmpl"
 footer="/etc/e-smith/web/common/foot.tmpl">

 <page name="First" pre-event="print_status_message()">

 <description>FORM_DESCRIPTION</description>

 <subroutine src="print_cellnumbers_table()" />
 </page>

 <page name="CELLNUMBERS_PAGE_MODIFY"
 pre-event="turn_off_buttons()"
 post-event="modify_cellnumber()" >

 <description>MODIFY_TITLE</description>

 <field type="literal" id="User" >
 <label>LABEL_USER</label>
 </field>

 <field type="literal" id="FullName">
 <label>LABEL_FULLNAME</label>
 </field>

 <field type="text" id="CellNumber">
 <label>LABEL_CELLNUMBER</label>
 </field>

 <subroutine src="print_button('SAVE')" />
 </page>
 </form>

And the form implementation goes in /usr/lib/perl5/site_perl/esmith/FormMagick/Pan-
els/cellnumbers.pm :

#!/usr/bin/perl -w
 package esmith::FormMagick::Panel::cellnumbers;

 use strict;

 use esmith::FormMagick;

2013-01-22 RF-232: 0.0.1 63 / 83

SME server Developer's Manual

 use esmith::AccountsDB;
 use esmith::ConfigDB;

 use Exporter;
 use Carp qw(verbose);

 use HTML::Tabulate;

 our @ISA = qw(esmith::FormMagick Exporter);

 our @EXPORT = qw();

 our $db = esmith::ConfigDB->open();
 our $adb = esmith::AccountsDB->open();

 sub new
 {
 shift;
 my $self = esmith::FormMagick->new();
 $self->{calling_package} = (caller)[0];
 bless $self;
 return $self;
 }

 sub print_cellnumbers_table
 {
 my $self = shift;
 my $q = $self->{cgi};

 my $cellnumbers_table =
 {
 title => $self->localise('CURRENT_LIST_OF_CELLNUMBERS'),

 stripe => '#D4D0C8',

 fields => [qw(User FullName CellNumber Modify)],

 labels => 1,

 field_attr => {
 User => { label => $self->localise('USER_LABEL') },

 FullName => { label => $self->localise('FULLNAME_LABEL') },

 CellNumber => { label => $self->localise('CELLNUMBER_LABEL') },

 Modify => {
 label => $self->localise('MODIFY'),
 link => \&modify_link },
 }
 };

 my @data = ();

 my $modify = $self->localise('MODIFY');

 for my $user ($adb->users)
 {
 push @data,
 {
 User => $user->key,

 FullName => $user->prop('FirstName') . " " .
 $user->prop('LastName'),

 CellNumber => $user->prop('CellNumber') || '',

 Modify => $modify,

64 / 83 RF-232: 0.0.1 2013-01-22

Advanced customization of the SME Server

 }
 }

 my $t = HTML::Tabulate->new($cellnumbers_table);

 $t->render(\@data, $cellnumbers_table);
 }

 sub modify_link
 {
 my ($data_item, $row, $field) = @_;

 return "cellnumbers?" .
 join("&",
 "page=0",
 "page_stack=",
 "Next=Next",
 "User=" . $row->{User},
 "FullName=" . $row->{FullName},
 "CellNumber=" . $row->{CellNumber},
 "wherenext=CELLNUMBERS_PAGE_MODIFY");
 }

 sub modify_cellnumber
 {
 my $self = shift;
 my $q = $self->{cgi};

 my $user = $adb->get($q->param('User'));

 $user->set_prop('CellNumber', $q->param('CellNumber'));

 return $self->success('SUCCESSFULLY_MODIFIED');
 }

 1;

Save the two files in the correct locations and then set the correct permissions and ownership:

cd /etc/e-smith/web/functions
chown root:admin cellnumbers
chmod 4750 cellnumbers

Then create a symbolic link to the script from the web manager cgi-bin/ directory:

cd /etc/e-smith/web/panels/manager/cgi-bin
ln -s ../../../functions/cellnumbers cellnumbers

/etc/e-smith/events/actions/navigation-conf

If you refresh the navigation bar, you will see a Cell numbers screen, which can be used to edit cell phone num-
bers for each user.

You could easily package this into an RPM and would just need the cellnumbers description, the
cellnumbers.pm implementation and the symbolic link in the RPM. If you installed this application on any
SME Server you could immediately start entering cell phone numbers for each user.

1.5. Using the LDAP server

The SME Server automatically creates and maintains an LDAP address book. The LDAP server listens for re-
quests on port 389, which is the standard TCP/IP port for LDAP. At this time, the LDAP server should be con-
sidered read-only as it is generated from the system configuration and accounts data. Changes to the LDAP

2013-01-22 RF-232: 0.0.1 65 / 83

SME server Developer's Manual

schema will be backed up and restored, but major system reconfiguration may reset the LDAP database to the
default schema.

1.6. Data backup

The SME Server supports two methods for data backup. For light-usage sites, end users can use their web
browser to select a backup to desktop option; this creates a compressed file of the configuration databases and
all user data on the server, and uploads it to the user's desktop via their web browser.

Note:

The desktop backup is limited to 2GBytes of data on most operating systems.

For heavier-usage sites, automatic nightly tape backup can be configured.

Third party application writers do not need to make special backup arrangements. All that is required is to en -
sure that all data files are placed within the standard directories that are backed up. All files and directories
within the /home/e-smith/files/ tree are always backed up by all of the SME Server backup mechan-
isms.

There is a pre-backup event which is signalled before a backup is performed. This can be used to shutdown
applications or databases to ensure that a consistent state is backed up. The SME Server automatically performs
an ASCII export of all MySQL databases in pre-backup event.

There is a corresponding post-backup event which is signalled after the backup has been performed. This can
be used to restart services after the backup.

1.7. Using the MySQL database

The SME Server provides a standard method for performing MySQL database initialization and migration.
This is done by creating files in the /etc/e-smith/sql/init/ directory. These files are run automatic-
ally when MySQL is started, and deleted if they run successfully.

A separate MySQL database and one or more database users should be created for each application. The data-
base password should be stored in the configuration database and either retrieved from the configuration data-
base by the application or passed to the application via an httpd.conf fragment. The password should be
automatically generated, unique to this server and this application, and stored as a property in the configuration
database for later use in database scripts.

Note:

Database passwords required for application configuration files should be retrieved from the configura-
tion database.

The MySQL root is automatically generated and configured for command-line MySQL use by the root system
user. The MySQL root password should only be used for database maintenance such as creating and deleting
databases and performing database backups.

Warning:

Applications should never use the MySQL root password for access to the database and it should never
be entered into application configuration files.

First choose a name for your database, as well as a username to access the data. For example, let's say your
database is called loggerdemo, the username is loguser and the password is $loggerdemo{DbPassword}. A
migrate fragment like this might be used to create the password:

66 / 83 RF-232: 0.0.1 2013-01-22

http://wiki.contribs.org/File:Important.png
http://wiki.contribs.org/File:Important.png
http://wiki.contribs.org/File:Warning.png

Advanced customization of the SME Server

{
 my $rec = $DB->get('loggerdemo')
 || $DB->new_record('loggerdemo', {type => 'service'});

 my $password = $rec->prop('DbPassword');
 return "" if $password;

 use MIME::Base64;

 $rec->set_prop('DbPassword', sprintf("%15.0f", int((1000000000000000) * rand())));
}

then create a template which generates a file in the /etc/e-smith/sql/ directory, and put the relevant
SQL commands in that file. The SQL commands should set up the application's username and retrieve the data -
base password from the configuration database. It creates the new MySQL database and any tables required by
your application. Write these SQL commands using the IF NOT EXISTS clause so that they do nothing if the
tables have already been created. For example, you might create the template /etc/e-smith/tem-
plates/etc/e-smith/sql/loggerdemo-create-schema.sql with the following contents:

Create the user account and password. (This is harmless if the
 # user account and password already exist.) Note the reference
 # to the 'loggerdemo' database which will be created in the next
 # few statements.

 USE mysql;

 REPLACE INTO user (host, user, password)
 VALUES ('localhost', 'loguser', PASSWORD ('{ $loggerdemo{DbPassword} }'));

 REPLACE INTO db (host, db, user,
 select_priv, insert_priv, update_priv,
 delete_priv, create_priv, drop_priv)
 VALUES ('localhost', 'loggerdemo', 'loguser',
 'Y', 'Y', 'Y', 'Y', 'Y', 'Y');

 FLUSH PRIVILEGES;

 # Create 'loggerdemo' database. (Do nothing if the database
 # already exists.)

 CREATE DATABASE IF NOT EXISTS loggerdemo;

 # Create log_entry table within the 'loggerdemo' database.
 # (Do nothing if the table already exists.)

 USE loggerdemo;

 CREATE TABLE IF NOT EXISTS log_entry
 (
 entry_message varchar(60),
 entry_time datetime
);

Include the migrate fragment and your template in your RPM. Note that the password generated in this way is
unique to this server and this application and automatically stored in the configuration database for later use.
This means that it is backed up and restored through the normal server operations.

Note:

For more documentation on MySQL schema creation commands, see: http://www.mysql.com/docu-
mentation/mysql/bychapter/

2013-01-22 RF-232: 0.0.1 67 / 83

http://www.mysql.com/documentation/mysql/bychapter/
http://www.mysql.com/documentation/mysql/bychapter/
http://wiki.contribs.org/File:Important.png

SME server Developer's Manual

In the post-installation section of your RPM, expand the template, and run the
/etc/rc.d/init.d/mysql.init script. For example the post-installation section of your RPM SPEC
file might look like this:

%post
/etc/e-smith/events/actions/initialize-default-databases (needed if a contrib and it
contains DB templates)
expand-template /etc/e-smith/sql/init/loggerdemo-create-schema.sql
/etc/rc.d/init.d/mysql.init start
true

Installing this RPM will create the /etc/e-smith/sql/loggerdemo-create-schema.sql tem-
plates (because it is part of the RPM), and the post-installation actions will expand the template and run the
mysql.init script, which will execute the schema creation commands and delete the generated file. When
the RPM installation is finished, the database schema will have been created, and the MySQL database will be
ready to process SQL commands from your application.

It is also possible to perform MySQL initialization in languages other than SQL, for example if the logic is bet-
ter suited to another language, simply by creating a file in the /etc/e-smith/sql/init/ directory. The
file must be executable and not have a .sql extension. For example, the template expansion might generate
this file:

#! /bin/sh

 exec mysql < /home/httpd/html/horde/scripts/db/mysql_create_tables.sql

You can use the templates.metadata mechanism to ensure the correct permissions on the generated file.
Remember, the files are removed from the /etc/e-smith/sql/init/ directory if they run successfully.

It is important to think through what will happen when your application is installed, uninstalled, reinstalled, or
upgraded. The instructions described above do not specify any uninstallation procedure - therefore the database
tables will be left unchanged if your application is removed, reinstalled, or upgraded. If you want the data to be
deleted when the application is removed, create a post-uninstallation script using the same technique as the
post-installation script.

The instructions above apply to an application with a schema that does not evolve. If you create a new version
of your application that requires schema changes, your post-installation script will have to migrate the database
from the old to the new schema. In that case you have two options. Say the original version of the application is
1.0, and the new version is 1.1.

1. The first option is to release two versions of the 1.1 application - one for new installations (containing SQL
commands to create a new schema), and a second version for upgrading 1.0 installations (containing SQL
commands to upgrade the 1.0 schema). The RPM mechanism allows you to specify dependencies to ensure
that only the correct version of each RPM can be installed on a given SME Server.

2. The better option is to change the template so that it includes the appropriate MySQL code to query the
database and automatically determine whether to migrate an existing schema or create a new one. The e-
smith-horde package contains a number of MySQL database initialisation and migration scripts which
may be useful to study.

1.8. Sending email messages

If your application needs to send an email message, it should use the SMTP protocol and send the message
through the local SMTP server (connect to localhost, port 25).

There are many toolkits available to make this simpler, for example the Mail::Send library (see perldoc
Mail::Send) if you are sending the message from a Perl program.

68 / 83 RF-232: 0.0.1 2013-01-22

Advanced customization of the SME Server

1.9. Managing the firewall

The SME Server approach provides better security than a typical firewall, because the SME Server is managed
automatically. Conventional firewalls have complex user interfaces, and require a system administrator to
choose policies (e.g. which services should be permitted, which ports should be forwarded, etc.) The SME
Server firewall has no user interface. It automatically generates the best ruleset that is consistent with the server
settings, and is automatically regenerated whenever the server settings are changed.

1.9.1. Creating firewall pinholes for your application

Let us say that your service needs to provide a public service on TCP/IP port 4321, which is normally blocked
by the firewall rules. All that you need to do is define this to the SME Server

config set myservice service TCPPort 4321 access public status enabled

signal-event remoteaccess-update

Note that a firewall hole is only opened if three things are true - the service has a TCPPort (or UDPPort) defini-
tion, the service is set to public access, and the service is enabled.

You can open multiple ports.

config set myservice service TCPPort 4321,4322 access public status enabled

Run the commands above, and then these ones:

cp /etc/rc.d/init.d/masq /tmp

config setprop myservice access private

signal-event remoteaccess-update

diff -u /etc/rc.d/init.d/masq /tmp/masq

This will produce output something like this:

[root@gsxdev1 esmith]# diff -u /tmp/masq /etc/rc.d/init.d/masq
--- /tmp/masq 2006-02-02 13:14:09.000000000 +1100
+++ /etc/rc.d/init.d/masq 2006-02-02 13:14:13.000000000 +1100
@@ -340,9 +340,7 @@
 /sbin/iptables -A $NEW_InboundTCP --proto tcp --dport 389 \
 --destination $OUTERNET --jump denylog

- # myservice: TCPPort 4321, AllowHosts: 0.0.0.0/0, DenyHosts:
- /sbin/iptables -A $NEW_InboundTCP --proto tcp --dport 4321 \
- --destination $OUTERNET --src 0.0.0.0/0 --jump ACCEPT
+ # myservice: TCPPort 4321, AllowHosts: , DenyHosts:
 /sbin/iptables -A $NEW_InboundTCP --proto tcp --dport 4321 \
 --destination $OUTERNET --jump denylog

The output above is the differences between two copies of the firewall rules - the first (marked with minus
signs) is when myservice was set to public. The second (marked with plus signs) is when the service was set to
private. The important change is from --jump ACCEPT to --jump denylog.

1.9.2. Restricting services to specific external hosts: AllowHosts and DenyHosts

As well as being set to public and private, it is possible to allow or deny remote machines access to a particular
service. Let's make the service public once more, but limit access to one host and one subnet:

config setprop myservice access public

2013-01-22 RF-232: 0.0.1 69 / 83

SME server Developer's Manual

config setprop myservice AllowHosts 1.2.3.4,100.100.100.0/24

signal-event remotaccess-update

diff -u /etc/rc.d/init.d/masq /tmp/masq

which should produce output something like this:

[root@gsxdev1 esmith]# diff -u /tmp/masq /etc/rc.d/init.d/masq
--- /tmp/masq 2006-02-02 13:14:09.000000000 +1100
+++ /etc/rc.d/init.d/masq 2006-02-02 13:22:32.000000000 +1100
@@ -340,9 +340,11 @@
 /sbin/iptables -A $NEW_InboundTCP --proto tcp --dport 389 \
 --destination $OUTERNET --jump denylog

- # myservice: TCPPort 4321, AllowHosts: 0.0.0.0/0, DenyHosts:
+ # myservice: TCPPort 4321, AllowHosts: 1.2.3.4,100.100.100.0/24, DenyHosts:
 /sbin/iptables -A $NEW_InboundTCP --proto tcp --dport 4321 \
- --destination $OUTERNET --src 0.0.0.0/0 --jump ACCEPT
+ --destination $OUTERNET --src 1.2.3.4 --jump ACCEPT
+ /sbin/iptables -A $NEW_InboundTCP --proto tcp --dport 4321 \
+ --destination $OUTERNET --src 100.100.100.0/24 --jump ACCEPT
 /sbin/iptables -A $NEW_InboundTCP --proto tcp --dport 4321 \
 --destination $OUTERNET --jump denylog

The firewall rulesets are automatically changed so that instead of allowing access from all hosts 0.0.0.0/0, they
now two specific rules to allow the host and network specified, and a new --jump denylog rule which blocks
and logs any others.

Note:

Hosts which are not listed in AllowHosts are denied, if this property is configured.

There is also a DenyHosts property which generates rules to block specific hosts, if this is required. If there is a
specific reason to limit access to a service, you should normally use AllowHosts to list the ones which do re-
quire access. The DenyHosts property is provided for completeness and can be useful in specific situations, for
example to block mail from a misbehaving mail server while allowing it from all other sites.

1.10. Starting up programs automatically upon system boot

If your package implements a server or daemon, you will probably want it to be started automatically when the
system boots.

The SME Server boots in runlevel 7, so you can get an idea of the startup processes by listing the contents of
/etc/rc.d/rc7.d.

These are similar to the init scripts you may be familiar with from other Linux systems, with one important dif-
fernce. Instead of pointing to scripts within /etc/rc.d/init.d, all of those init entries are links to
/etc/rc.d/init.d/e-smith-service. This is a wrapper which checks the configuration database to
see if the service is supposed to be running and if so, starts the service from
/etc/rc.d/init.d/whatever.

So for example, you might have:

S90squid -> /etc/rc.d/init.d/e-smith-service

70 / 83 RF-232: 0.0.1 2013-01-22

http://wiki.contribs.org/File:Important.png

Advanced customization of the SME Server

The e-smith-service script looks up the name it was invoked with (S90squid), drops the prefix (leaving squid),
checks the configuration database for the "squid" service, then if it's supposed to run, does:

/etc/rc.d/init.d/squid start

Here is the step-by-step procedure for making your package start up a program called myserver at boot time.

1. First, create the traditional init script /etc/rc.d/init.d/myserver which can be run with the com-
mand-line arguments "start" or "stop" to perform the appropriate action on the server. Look at other init
scripts in the same directory for examples. This script should be included in your RPM.

Note:

If your service is managed by runit, all you need is a link to the daemontools script.

1. Second, create a symbolic link as shown below, choosing the two-digit number after the letter S to control
the startup order of the server programs. Include this symbolic link in your RPM.
/etc/rc.d/rc7.d/S55myserver -> /etc/rc.d/init.d/e-smith-serviceThese two steps are typical for any
Linux/Unix server application, except that the symbolic link traditionally points directly to the init script,
rather than to e-smith-service. Remember, we want to link to e-smith-service to ensure that a
disabled service does not start at boot time.

2. Third, let's assume for now that myserver should be enabled by default, and so start at boot time. You just
need to create some properties in the configuration database to make that happen:

cd /etc/e-smith/db/configuration/defaults
mkdir myserver
cd myserver

echo service >type
echo enabled >status

For testing, you will also need to run initialize-default-databases to load these new defaults.

Your RPM can also start the service in the %post section, but you need to be very careful to only do this in run-
level 7. The same %post section is run during installation from CDROM, and we do not want services started
during that installation. They will most likely fail and may cause the CD install to fail.

All of these steps result in the server starting automatically upon installation of the RPM, and whenever the
server is rebooted.

Care should also be taken for the RPM to uninstall cleanly. The service should be stopped and marked not to be
restarted and so your RPM should contain the following lines in the pre-uninstallation script:

%preun
/sbin/e-smith/db configuration setprop myserver status disabled
/etc/rc7.d/S55myserver stop
true

The /service/myserver symbolic link is owned by the RPM, and when it is removed, runsvdir will soon
notice and kill the runsv supervision process. The final true command ensures that a failure from the other
commands won't cause the removal of the RPM to fail. Note that these steps cannot be in the post-uninstalla -
tion script, since some of the required files may have been removed by that time.

2013-01-22 RF-232: 0.0.1 71 / 83

http://wiki.contribs.org/File:Important.png

SME server Developer's Manual

VI- Documentation and resources

1. Other sources of information

1.1. Perl modules

If you are not already familiar with the Perl programming language, you will need to read up on at least the ba -
sics. One online course is available from http://sourceforge.net/projects/spork.

The SME Server has a wealth of Perl libraries to perform common functions including manipulating the con-
figuration database, performing common CGI tasks, etc. The modules available include:

1) esmith::ConfigDB
2) esmith::AccountsDB
3) esmith::NetworksDB
4) esmith::HostsDB
5) esmith::NetworkServicesDB
6) esmith::DB
7) esmith::FormMagick
8) CGI::FormMagick
9) Text::Template

The following libraries are also installed for compatibility with older code, but they should no longer be used.
These libraries may be removed in future releases.

 esmith::util (deprecated)
 esmith::db (deprecated)
 esmith::cgi (deprecated)
The documentation can be accessed from the Linux command line on your SME Server by typing perldoc
esmith::ConfigDB (or whatever module name you're interested in).

More information about building RPMs can be found at http://www.rpm.org/RPM-HOWTO/build.html.
This is especially recommended if you wish to use anything more than the extremely simple outline given
above. For instance, you may wish to to build RPMs using original source and patches or include more detail
and functionality in your spec file.

1.2. Documentation Links
 -Managing Software with Yum - http://mirror.centos.org/centos/4/docs/html/yum/
 -CentOS 4/RHEL4 Documentation - http://mirror.centos.org/centos/4/docs/
 -Fedora Documentation - http://fedora.redhat.com/docs/
 -Fedora Developers Guide - http://fedora.redhat.com/docs/developers-guide/
 -Fedora Documentaion Guide - http://fedora.redhat.com/docs/documentation-guide/
 -Maximum RPM Book - http://www.rpm.org/max-rpm-snapshot/
 -Fedora RPM Guide (draft) - http://fedora.redhat.com/docs/drafts/rpm-guide-en/
 -Fedora Wiki - Building Packages Guide -
http://fedoraproject.org/wiki/Docs/Drafts/BuildingPackagesGuide
 -Fedoraproject.org RPM Packaging Guidelines -
http://fedoraproject.org/wiki/PackagingGuidelines

72 / 83 RF-232: 0.0.1 2013-01-22

http://fedoraproject.org/wiki/PackagingGuidelines
http://fedoraproject.org/wiki/Docs/Drafts/BuildingPackagesGuide
http://fedora.redhat.com/docs/drafts/rpm-guide-en/
http://www.rpm.org/max-rpm-snapshot/
http://fedora.redhat.com/docs/documentation-guide/
http://fedora.redhat.com/docs/developers-guide/
http://fedora.redhat.com/docs/
http://mirror.centos.org/centos/4/docs/
http://mirror.centos.org/centos/4/docs/html/yum/
http://www.rpm.org/RPM-HOWTO/build.html
http://sourceforge.net/projects/spork

Documentation and resources

 -Fedoraproject.org Package Review Guidelines -
http://fedoraproject.org/wiki/PackageReviewGuidelines

-Fedoraproject.org RPM Spec File Scriptlet Snippets - http://fedoraproject.org/wiki/ScriptletSnippets

Category: SME Server

Victoire totale, hissons la bannière de la victoire.

2013-01-22 RF-232: 0.0.1 73 / 83

http://wiki.contribs.org/Category:SME_Server
http://wiki.contribs.org/Special:Categories
http://fedoraproject.org/wiki/ScriptletSnippets
http://fedoraproject.org/wiki/PackageReviewGuidelines

Crédits

Crédits

Copyright © 2002-2006 Mitel Corporation

Auteur: gordonr

Remerciement: Tous les contributeurs GNU/GPL/GFDL de http://www.contribs.org.

Intégré par: Michel-André Robillard CLP

Contact: michelandre at micronator.org

Répertoire de ce document: E:\000_DocPourRF232_general\RF-232_SME_DevelopersGuide\RF-232_SME-
8.0_SMEServerDevelopersGuide_2013-01-22_18h34.odt

Historique des modifications:

Version Date Commentaire

0.0.1 2013-01-22 Début. M.-A. Robillard

2013-01-22 RF-232: 0.0.1 75 / 83

Index

Index

2
25..68

3
389..65

4
4321..69

A
About this manual...........................5
Access from the command line... .10
access public.................................69
Access to build system.................55
Access via the Perl API................10
Accounts.......................................14
accounts database.........................17
AccountsDB..................................11
Action script parameters...............15
Actions..15
Actions and events........................15
Adding a new event type..............46
adding a new server application. . .47
Adding a supervised service.........29
Adding a user interface screen......43
Adding localizations.....................45
Adding new configuration database
parameters.....................................41
Advanced customization...............60
Advanced customization principles
..60
advancedsecurity..........................33
AllowHosts...................................69
An overview...................................5
Antoine de Saint-Exupéry..............6
Apache..6
application RPMs.........................49
Apply a patch................................57
Architecture overview....................7
Argument......................................18
ASCII-betical order......................22
ASCIIbetical.................................20
Automating best practice................6

B
Binary RPMS................................50

book.conf......................................23
bootstrap-console-save18
Build...58
BUILD..50
Building an RPM..........................50

C
cablemodem....................................6
callbacks.......................................39
category/group..............................48
CentOS..5
CentOS installation.........................7
CGI scripts....................................33
CGI::FormMagick........................72
Changing a configuration template
..36
chatserv.conf.................................47
chmod 777....................................25
Commentaire................................75
Commit...58
Common files...............................33
compatiblity..................................49
Complex entries..............................9
config command...........................10
config show AccessType................9
config show atalk............................9
config show ConsoleMode.............9
config show dhcpd..........................9
config show LocalIP.....................10
config show TimeZone...................9
ConfigDB......................................11
Configuration................................14
configuration database..................10
Configuration database...................9
configuration databases............7, 13
Configuration file templates.........20
Configuring your development
environment..................................54
console user interfaces....................7
console-save............................13, 18
copyright information...................48
createlinks.....................................50
CreateLinks...................................54
Creating firewall pinholes............69
creating RPMs for your application
..48
creating users,...............................61
Crédits...75
Customization guidelines.............47

customize the SME Server...........36
cvs update -dPA............................56

D
daemon..26
daemon group...............................26
Dag Wieers...................................35
Data backup..................................66
Database initialization..................11
database keys................................42
DB...11
db accounts show admin.........10, 38
db command.................................10
db configuration show LocalIP.....10
Defaults files.................................12
defaults/...11
demo-user-tracking.......................39
DenyHosts....................................69
Design of the template system......20
Design philosophy..........................6
development environment......35, 54
dialup..6
dialup connection..........................35
differ only by their case................13
djbdns and dnscache.......................6
DNS server.....................................6
DNS servers..................................14
Documentation and resources.......72
Documentation Links...................72
domain names.................................8
Domains..14
DSL...35
DSL/PPPoE....................................6

E
E-mail function.............................38
e-smith-devtools...........................36
e-smith-service..............................29
e-smith-service script....................29
e-smith-service wrapper...............28
Edit the spec..................................58
email server configuration..............8
email-update.................................18
emailsettings.pm...........................38
esmith::AccountsDB...............12, 72
esmith::cgi....................................72
esmith::ConfigDB.........................10
esmith::ConfigDB72

2013-01-22 RF-232: 0.0.1 77 / 83

SME Server Developer's Manual

esmith::db.....................................72
esmith::DB....................................72
esmith::DB module.......................10
esmith::FormMagick....................72
esmith::HostsDB...........................72
esmith::NetworksDB....................72
esmith::NetworkServicesDB........72
esmith::util....................................72
eth0...26
eth1...26
Evaluation order...........................13
Event...18
Event logs.....................................19
event_link.....................................54
Events...16
events and actions...........................7
Events with arguments..................17
expand-template............................26
expand-template filename.............26
Extensibility....................................7
ExternalInterface..........................15
ExternalIP.....................................15

F
Failed events.................................20
false (non-zero) exit status............19
FILTER setting.............................26
find . -type f..................................51
Flexbackup......................................6
For Mitel developers5
Force files.....................................12
force/...11
Forcing database initialization......13
FormMagick.................................30
FormMagick panel........................30
FormMagick web function...........30
FormMagick XML.......................44
FTP server.......................................6

G
generic_template_expand.............16
Gerrit Pape's runit.........................27
GID="daemon".............................26
GNU Free Documentation License
..82
group-create..................................18
group-delete..................................18
group-modify................................18
groups...61
Groups..14

H
halt..18
handler program............................39
Handling deletions........................19
Horde IMP......................................6
host-create.....................................18
host-delete.....................................18
host-modify...................................18
Hosts...14
HostsDB..11
How to resolve conflicts...............24
HTML...22
HTTP..6
http://cr.yp.to/daemontools.html...29
http://www.rpm.org/max-rpm/......35
httpd.conf......................................24

I
i-bays..61
i386...50
ibay-create....................................18
ibay-delete....................................18
ibay-modify..................................18
imap-relocate-maildirs..................54
Implicit actions.............................16
Import cvs in your workspace......56
Import source to sourceforge........56
Information bays...........................14
init...27
init process....................................27
initialize-default-databases...........71
Install cvs54
Internet connectivity options..........6
introduction to RPMs....................48
IP address assignments...................8
ip-change......................................18
IPAddress......................................15

K
kernel modules..............................48
key/value pair.................................9

L
LABEL_LOGGERDEMO_INTER
VAL..46
Last updated....................................2
Layout of a FormMagick script....30
LDAP address book......................65
LDAP attributes............................17
LDAP directory,............................17
LDAP schema...............................17

LDAP server.................................65
Leveraging the provisioning system
..60
local..18
Local environment........................54
Local site overrides.......................23
localnetworks................................33
logfile-writing...............................41
Logger...45
loggerdemo.............................42, 66
loggerdemo-create-schema.sql.....67
loggerdemo-update:......................46
loggerdemo.pm.............................44
LogInterval...................................41
loguser..66

M
Macintosh file sharing....................6
Mail server......................................6
Mail::Send library.........................68
Maildir..48
Mailing Lists.................................59
Make a patch.................................57
make build....................................58
make tag..58
Managing the firewall...................69
Manual testing..............................26
Mapping templates to events........24
migrate fragment...........................12
migrate fragments.........................12
migrate, defaults, force.................13
migrate/...11
Mitel 6000.......................................5
Mitel Corporation...........................2
Modify the package......................57
Modifying a SME Server package56
myaction.......................................15
myservice......................................69
MySQL...66
mysql.init script............................68

N
nano..35
navigation-conf.............................45
Netatalk...6
network printers..............................6
Network Time Protocol................22
network-create..............................18
network-delete..............................18
Networks.......................................14
NetworksDB.................................11
new account properties.................62

78 / 83 RF-232: 0.0.1 2013-01-22

Index

New Feature Request....................24
normal templates hierarchy..........23
NTP...22

O
Order of implicit actions...............16
Other configuration databases......14
Other sources of information........72
overview of FormMagick.............30

P
package esmith;............................15
package name...............................48
Packaging your application..........48
Panel definitions...........................33
Parallel port.....................................6
parallel tree...................................23
password-modify..........................18
Pentium machine..........................35
Perl API...................................10, 11
Perl code.......................................15
Perl modules.................................72
perldoc..11
perldoc CGI::FormMagick...........32
perldoc esmith::ConfigDB............72
perldoc esmith::templates.............26
perldoc Mail::Send.......................68
permissions...................................41
Permissions and security..............33
PERMS=0755...............................26
PHP...22
pico...35
plague-client.................................59
Platforms Development Team........5
policy settings.................................8
POP/IMAP....................................14
pop3..12
popd..12
port 25...68
port 389...65
post-backup...................................18
post-install....................................18
post-uninstallation........................52
post-uninstallation script...............37
post-upgrade...........................13, 18
post-upgrade event........................54
ppp..26
PPTP...6
pre-backup..............................18, 66
pre-event.......................................31
pre-install......................................47
pre-requisites................................48

pre-uninstall..................................47
Principle 1.......................................6
Principle 2.......................................6
Principle 3.......................................7
Principle 4.......................................7
Printers..14
Process startup..............................27
Process supervision.......................27
processTemplate...........................26
ProFTPd..6
Programmatically creating............61
property names.............................42
proxying email..............................48
pseudo-property............................13
pseudonym-create.........................18
pseudonym-delete.........................18
pseudonym-modify.......................18
Pseudonyms..................................14
pstree 1..28

Q
qmail...6

R
RAID..5
Raise a Bugzilla entry...................56
raw Linux version.........................49
reboot......................................13, 19
ReleaseVersion..............................12
Releasing a contrib package.........59
Reliability.......................................7
Remote administration....................6
remoteaccess.................................33
remoteaccess-update.....................19
Reserving accounts.......................62
Restricting services.......................69
Revision..2
rm -f clog......................................58
root..25
root:admin.....................................45
route-ethX.....................................26
rpm -e..55
rpm -q...57
RPM development environment...49
RPM Package Manager..................6
rpmbuild..52
rpmbuild -ba.................................52
RPMS..50
run-level 7...............................27, 71
Run-level 7...................................28
runit...27
runsv...28

runsvdir...28
runtime..49

S
S15..16
S85..16
safe_symlink.................................53
Samba...6
Sending email messages...............68
server-manager...............................7
services2adjust..............................16
set-external-ip...............................15
setuid root.....................................33
Setup CVS....................................54
sf.net...56
signal-event console-save.......13, 17
Signalling events...........................17
Simple entries.................................9
Simplicity..6
SME Server Architecture8
SME Server framework..................7
SME Server internals......................9
SME Server package....................35
SME Server platform......................5
SME_Server:Download................35
SourceForge..................................54
Sourceforge access.......................55
SOURCES....................................50
SPECS..50
SRPMS...50
SSH...6
SSH key..56
sshd...12
SSL...6
Standard events.............................17
standard events18
standard templates........................24
Starting up programs automatically
..70
static IP...6
status property...............................12
sub change_settings_delivery.......38
Sub-directoryTop-level.................30
sudo rpm -e loggerdemo...............53
sudo yum localinstall....................53
supervised service.........................29
supervision and shutdown............27
symbolic links...............................41
System accounts...........................14

T
tail -F /var/log/messages...............41

2013-01-22 RF-232: 0.0.1 79 / 83

SME Server Developer's Manual

Tape backup....................................5
Tape backups6
TCPPort..69
TCPPort 4321...............................69
Template expansion......................24
Template fragment ordering.........22
Template permissions and
ownership......................................25
template system..............................7
template-begin and template-end..22
template-begin-perl.......................22
template-end.................................22
template-user-custom tree.............23
templatedemo................................38
Templates for user home directories
..23
templates hierarchy.......................24
templates-custom..........................23
templates-default/.........................22
templates-user...............................23
templates-user tree........................23
templates-user-custom..................23
templates.metadata.................22, 25
templates2events...........................53
templates2expand.............16, 24, 53
Text::Template..................21, 43, 72
The configuration databases.........14
The createlinks script....................53
The FormMagick XML description
..31
The magic of templates.................37
The runit process tree...................27
The server-manager web interface
..29
The Text::Template module..........20
The web directory.........................30
type, status and access properties. 13

U
UDPPort..69
UID="root"...................................26
URL accounts...............................14
USB..6
use esmith::AccountsDB;.............10
use strict;.......................................31
use warnings;................................31
user accounts...................................8
User accounts................................14
user-create.....................................19
user-delete.....................................19
user-lock.......................................19
Using events and actions..............39

Using the LDAP server.................65
Using the MySQL database..........66

V
version number.............................48
Victoire...73
VirtualHosts..................................24

W
Web function scripts.....................30
Web server......................................6
Webmail..6
What is the SME Server?................5
Whitespace....................................38
Who should read.............................5
Windows file sharing......................6
www..25

X
X window system...........................7
XML...30

Y
yourpackage-x.y.z.........................50
yum install cvs..............................54
yum-import-keys..........................57

Z
zero (success)................................19

.

./en-us/etc/e-smith/web/functions/30

./esmith/FormMagick/Panel/........30

./fr/etc/e-smith/web/functions/......30

./manager/{cgi-bin,common,html}/

..30

./password/{cgi-bin,common,html}/

..30

.contribs-server-ca.pem................55

.contribs-upload-ca.pem...............55

.plague-client.cfg..........................55

.qmail/...23

.username.pem..............................55

"
"{" and "}"....................................20

/
/etc/crontab...................................37
/etc/e-smith/db..............................11
/etc/e-smith/db/.............................11
/etc/e-smith/db/configuration/.......11
/etc/e-smith/events/.......................16
/etc/e-smith/events/actions/..........15
/etc/e-smith/events/actions/myaction
..15
/etc/e-smith/events/console-save/. 17
/etc/e-smith/events/ip-change.......16
/etc/e-smith/locale/........................30
/etc/e-smith/templates-default......22
/etc/e-smith/templates/..................20
/etc/e-smith/web/common/...........30
/etc/e-smith/web/functions/..........30
/etc/e-smith/web/panels/...............30
/etc/hosts.......................................23
/etc/hosts template........................21
/etc/init.d/supervise/......................29
/etc/inittab.....................................27
/etc/ntp.conf file............................22
/etc/rc.d/rc7.d/...............................28
/etc/runit/2.....................................27
/home/e-smith/db/.........................13
/usr/lib/perl5/site_perl/..................30
/var/log/messages..........................37
/var/service/XXX..........................29

#
comments...................................21
Template demo crontab entry....43
#!/usr/bin/perl -w..........................22
#!/usr/bin/perl -wT........................31

%
%post..52
%postun..52

<
</form>...32
</page>...32
<lexicon lang="en-us">................45

$
$DomainName..............................22
$LocalIP..22
$loggerdemo{DbPassword}.........66
$OUT..43
$SystemName...............................22

80 / 83 RF-232: 0.0.1 2013-01-22

Index

2013-01-22 RF-232: 0.0.1 81 / 83

GNU Free Documentation License

GNU Free Documentation License

Version 1.3, 3 November 2008

 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software
Foundation, Inc.
 <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that
the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable
copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to
thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format,
SGML
or XML using a publicly available DTD, and standard-conforming
simple
HTML, PostScript or PDF designed for human modification.
Examples of
transparent image formats include PNG, XCF and JPG. Opaque
formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document
whose
title either is precisely XYZ or contains XYZ in parentheses following

text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains
a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice
which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may
accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque
copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document
under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
 from that of the Document, and from those of previous versions
 (which should, if there were any, be listed in the History section
 of the Document). You may use the same title as a previous version
 if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities
 responsible for authorship of the modifications in the Modified
 Version, together with at least five of the principal authors of the
 Document (all of its principal authors, if it has fewer than five),
 unless they release you from this requirement.
C. State on the Title page the name of the publisher of the
 Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
 adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice
 giving the public permission to use the Modified Version under the
 terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections
 and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add
 to it an item stating at least the title, year, new authors, and
 publisher of the Modified Version as given on the Title Page. If
 there is no section Entitled "History" in the Document, create one
 stating the title, year, authors, and publisher of the Document as
 given on its Title Page, then add an item describing the Modified
 Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for
 public access to a Transparent copy of the Document, and likewise
 the network locations given in the Document for previous versions
 it was based on. These may be placed in the "History" section.
 You may omit a network location for a work that was published at
 least four years before the Document itself, or if the original
 publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications",
 Preserve the Title of the section, and preserve in the section all
 the substance and tone of each of the contributor acknowledgements
 and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,
 unaltered in their text and in their titles. Section numbers
 or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section
 may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements"
 or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or
all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document
already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under
this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled
"Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a
copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also
include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual

title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new
versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published
(not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
"Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike
3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this
License, and if all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in
whole or
in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the
site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this
document
 under the terms of the GNU Free Documentation License, Version
1.3
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover
Texts,
replace the "with...Texts." line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being
LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.

82 / 83 RF-232: 0.0.1 22 janvier 2013

	The SME Server Developer's Guide
	Mitel Corporation

	II- An overview of the SME Server
	1. About this manual
	2. Who should read this manual?
	3. What is the SME Server?
	4. Design philosophy
	4.1. Principle 1: Automating best practice
	4.2. Principle 2: Simplicity
	4.3. Principle 3: Extensibility
	4.4. Principle 4: Reliability
	4.5. Architecture overview

	III- SME Server internals
	1. Configuration database
	1.1.1. Overview
	1.1.2. Simple entries
	1.1.3. Complex entries
	1.1.4. Access from the command line
	1.1.5. Access via the Perl API
	1.1.6. Database initialization
	1.1.7. Important notes about the configuration databases
	1.2. The configuration databases
	1.2.1. Configuration
	1.2.2. Accounts
	1.2.3. Domains
	1.2.4. Networks
	1.2.5. Hosts
	1.2.6. Other configuration databases

	1.3. Namespace issues

	2. Actions and events
	2.1. Actions
	2.1.1. Action script parameters

	2.2. Events
	2.2.1. Implicit actions: services2adjust and templates2expand
	2.2.2. Signalling events
	2.2.3. Events with arguments
	2.2.4. Standard events and their arguments
	2.2.5. Handling deletions
	2.2.6. Event logs
	2.2.7. Failed events

	3. Configuration file templates
	3.1. Design of the template system
	3.2. The Text::Template module
	3.2.1. template-begin and template-end
	3.2.2. /etc/e-smith/templates-default
	3.2.3. Template fragment ordering
	3.2.4. Templates for user home directories: templates-user
	3.2.5. Local site overrides: templates-custom and templates-user-custom
	3.2.6. How to resolve conflicts with standard templates
	3.2.7. Sub-directory templates

	3.3. Template expansion
	3.3.1. Mapping templates to events: templates2expand
	3.3.2. Template permissions and ownership: templates.metadata
	3.3.3. Manual testing: expand-template
	3.3.4. Perl API: processTemplate

	4. Process startup, supervision and shutdown
	4.1. Process startup
	4.2. Process supervision: runit (and supervise)
	4.2.1. The runit process tree
	4.2.2. Run-level 7 and the e-smith-service wrapper

	4.3. Adding a supervised service

	5. The server-manager web interface
	5.1. The web directory
	5.2. Web function scripts
	5.2.1. An overview of FormMagick
	5.2.2. Navigation metadata
	5.2.3. Permissions and security

	5.3. Common files
	5.4. Panel definitions

	IV- Create an SME Server package step by step
	1. Getting started
	1.1. Creating a development environment

	2. Getting to know how to customize the SME Server
	2.1. Exercise 1: Changing a configuration template
	2.2. Exercise 2: The magic of templates
	2.3. Exercise 3: Using events and actions
	2.4. Exercise 4: Adding new configuration database parameters
	2.5. Exercise 5: Adding a user interface screen
	2.5.1. Adding localizations

	2.6. Exercise 6: Adding a new event type
	2.7. Exercise 7: Thought experiment - adding a new server application
	2.8. Customization guidelines

	3. Packaging your application
	3.1. A quick introduction to RPMs
	3.2. Selecting and creating RPMs for your application
	3.3. Setting up your RPM development environment
	3.4. Building an RPM
	3.4.1. The createlinks script

	4. The SME Server development environment
	4.1. Configuring your development environment
	4.1.1. Local environment
	4.1.2. Access to build system
	4.1.3. Sourceforge access
	4.1.4. Import source to sourceforge
	4.1.5. Import cvs in your workspace

	4.2. Modifying a SME Server package
	4.2.1. Raise a Bugzilla entry
	4.2.2. Modify the package
	4.2.3. Releasing a contrib package

	4.3. Mailing Lists

	V- Advanced customization of the SME Server
	1. Advanced customization principles
	1.1. Leveraging the provisioning system for users, groups, and i-bays
	1.2. Programmatically creating users, groups, and i-bays
	1.3. Reserving accounts to avoid conflicts with user, group, or i-bay names
	1.4. Adding new account properties
	1.5. Using the LDAP server
	1.6. Data backup
	1.7. Using the MySQL database
	1.8. Sending email messages
	1.9. Managing the firewall
	1.9.1. Creating firewall pinholes for your application
	1.9.2. Restricting services to specific external hosts: AllowHosts and DenyHosts

	1.10. Starting up programs automatically upon system boot

	VI- Documentation and resources
	1. Other sources of information
	1.1. Perl modules
	1.2. Documentation Links

	Crédits
	GNU Free Documentation License

